UNIVERSITATEA POLITEHNICA BUCURESTI
FACULTATEA DE AUTOMATICA SI CALCULATOARE
DEPARTAMENTUL CALCULATOARE

_ Computer Science

‘ “Q) & Engineering

| Department

PROIECT DE LICENTA

Replicare adaptiva a datelor in BlobSeer

Coordonatori stiintifici: Absolvent:
Prof. Dr. Ing. Valentin Cristea Firica Alexandra - Nicoleta
Dr. Ing. Alexandru Costan

BUCURESTI

2011

POLITECHNICA UNIVERSITY OF BUCHAREST

FACULTY OF AUTOMATIC CONTROL AND COMPUTERS
COMPUTER SCIENCE DEPARTMENT

_ Computer Science
“Q) & Engineering
| Department

BACHELOR THESIS

Adaptive Data Replication in BlobSeer

Thesis supervisors: Firica Alexandra - Nicoleta
Prof. Dr. Ing. Valentin Cristea
Dr. Ing. Alexandru Costan

BUCHAREST

2011

Table of Contents

BN [0 o Yo [Tt o o T USRS 5
0 R 1T o 1Y | g T ¥ o T2 PRSP 5
1.2 DiSCUSSION ON @A@PTIVITY .eeiiiuriereeiiiieieiiieeeriieeesieeeeseeee e ssreeeeesateeessaeeeessbaeeeesnsseeeesssseeansseeessssseeesanns 6
1.3 THESIS OBJECTIVES ettt ettt et s e s be s st e et e sbeeesneeesaneesane 7
R I =Y oYU 113 V=P SPUPPRR 7
R =T =T IR Yo PR 9
B R S AW Y C 1 N USSR 9
2.2 GOOGIE FIle SYSTRIM ..ttt sttt e a e st e st et e bt e e sbb e e saeesbeeesneeesabeeeanees 10
2.2 Hadoop Distributed File SYStEMcciiiiiiiiieiiee ettt e et e s sarre e e et e e e s snnaeeesrees 11
3. Background.........
3.1 BlobSeer
I 00 A 21 T o N T=Y Y ol V1 Yot U o USSP 13
3.1.2 Interactions between BlobSeer @Ntitiesccivcuiieieiiiiie e 14
P Vool T T | =Y o - Yo < RSP 15
AN 1V oY 1 B Y A USSR 16
4. Adaptive Replication MOAUIEccoiuiiiiiiiee e e e e st e e st ae e s saaee e e sbeesennsreeesnnees 17
4.1 Replication Archit@CtUre OVEIVIEWccceiiiiiiiiieeeiiiieeetee e esiee e ettt e e sseree e e s sateessnaeeessnsaeeessnraeeeennnns 17
4.2 lllustration of the functionalities of the Replication Module..........ccoecveeviviiiiiinicni e 18
4.2.1 Maintaining the replication factor.......cooiiiiiiiii e 18
4.2.1 Increasing the replication factor.........cooiiiiiiiiie e 20
4.3 Zoom in on the Replication Manager
4.4 lllustration of the solution..........cccccveee.
4.5 Modifying the metadata tree...................
4.6 AIZOTTENM USEU ...ttt sttt e e bt e st e e st e s bt e s abeesabeesbeesbeeesaneenane
5. IMPIEMENTAtiON AETAIISeeii e et e e et ae e e s saae e e s b e e e e snaeeeeennneeas
5.1 Data structures + interactions scheme & Other details/iSSUEScccuvveeeeireeeeeiieeeeiiee e 28
I A Yol =Y o =Y T I 1 L= USSP 30
T (o YT T L= g = I =YY U1 SR 32
6.1 TESTING SCENATIIO weeiiiiiiiiiiiiiieeee e e e e rae e e e s ran e e e e e e e s eaans 32
6.2 Performance eValUatioNc.uiiieiiiieieeiie ettt e e e s e e e s e e s erae e e e s ate e ennaeeeennees 36
7. ConClUSIONS @Nd FULUIE WOTK . ..eiiiiiiieeeiiiiee ettt e e e e e st e e e st e e e s ate e e s snnaeeeesnseeeennseeeesnnsees 36
8 R 0o Yo {1 1V 4T o TSP
2 A RV AU I Yo Y SR
Acknowledgements....
20T =T T ol TSRS
F AN T o= Lo L= TSR PPRPR
AL Minimum SYSTEM rEQUITEIMENTSveiiiiiiiiiii e s s e s e e e s s e s e s e s e e e e e e e e e e e e aeaeaaeansns 38
A2 Steps required when running the applicationcccvivecieee e 40
A3 Sample configUration fileeei it 41

ADAPTIVE DATA REPLICATION IN BLOBSEER

Abstract

One of the key elements in ensuring autonomic behaviour for data storage systems is
adaptive data replication. This kind of behaviour is important and desirable as it can provide
various advantages, such as increasing availability of highly accessed data and minimizing the
storage resources used, thus leading to significant improvements in the overall performance of
the system. In order to achieve autonomic behaviour, certain adjustments must be made, in
accordance with the current state of the system, which is obtained by analyzing various
parameters, such as load modifications, available resources, number of read/write actions per
resource. This thesis addresses the problem of enabling self-adaptive data replication within the
BlobSeer distributed storage system. We discuss the system’s architecture, present the existing
replication module and the way we intend to enhance it. We analyze the impact of the modified
replication module in a distributed testing environment and we prove that it is efficient and very
much responsive to the clients’ needs.

Keywords: BlobSeer, MonALISA, adaptive data replication, storage space, autonomic
behaviour, replication factor, data availability.

ADAPTIVE DATA REPLICATION IN BLOBSEER

1. Introduction

In the course of this introduction, some general notions about the latest research and
technologies will be presented, thus establishing the current trends as well as the focal points that
draw the public’s eye at the time of the writing of this paper.

In addition to this, the second part of the introduction is reserved for a discussion, whose
purpose is to establish what the “adaptive” term means to us, as well as to the scientific community.
Moreover, we explain why our solution can be considered adaptive and what benefits come from
this type of behaviour.

1.1 General notions

One of the most common trends in computer systems nowadays refers to distributed
computing, which includes the grid and cloud concepts. These have rapidly gained popularity in both
academic and business environments, mainly because they offer data processing power as well as
storage facilities. The system this paper studies, BlobSeer, is one such data storage system. As its
name implies, the data is stored in the form of blobs (Binary Large OBject), which are splitted into
chunks and stored on several data providers. This technique is more formally known as data striping
[1] and the chunks are referred to as pages.

In the majority of cases, the processing power that this type of system provides is used mainly
to analyse and transform the stored data. This is the reason why data availability is a very important
issue. The apparently simple and obvious solution to this problem has been used so far, that is to
manually specify a number of desired copies at the creation of the file. However, there are some
disadvantages to this approach, such as not being able to modify the given number of replicas and,
finally, a waste of resources, in case the replicas are never actually needed. Ultimately, in a Cloud
context, this waste of resources translates into a waste of money, since the price paid for the
required service and for the disks themselves varies according to how many storage resources are
used.

Another important aspect to be considered is the fact that the system needs to be reliable,
which means that, even though there is a possibility of a crash from a node containing information,
the end user shouldn’t need to suffer from it and, more importantly, data should not be lost.
However, in the existing approach, if one of the copies was lost, due to any given reason (e.g.: disk
failures, network failures, uneven load on the machines, etc) no action is triggered to create another
copy in order to maintain the replication factor specified at the creation of the file.

This is where the adaptive replication data module steps in. Its role is not only to maintain a
given number of copies of a certain object, but to also give the system the capability to decide
whether there should be more or less copies in the system. Basically, what this means is that the
system itself, without any outside intervention, would be able to analyse its current state and make a
decision to increase or decrease the replication factor. Such a decision is taken based on the analysis
of various pieces of information about the data providers, gathered using the MonALISA monitoring
system and a special monitoring module developed for BlobSeer. The effect of such a capability of

5

ADAPTIVE DATA REPLICATION IN BLOBSEER

decision is enormous as it translates not only into availability of data, leading to customer
satisfaction, but also into reliability, thus increasing people’s trust in distributed services.

1.2 Discussion on adaptivity

One of the papers used as reference for defining and understanding autonomic behavior in
systems in general, as well as in distributed systems is brought forward by Kephart and Chess [2].
The aim of their paper is to stress the current situation, which is presented by them as a crisis.
According to them, the main reason for this situation is the “loom-like software complexity”, but also
the lack of solutions for the high demand systems have (e.g.: configure, optimize, maintain, merge,
etc.). Moreover, they highlight the fact that the actual trend of innovations leads to larger-sized and
even more complex systems, but fails to offer a practical solution to the existing crisis.

Surely, their paper comes to offer one such solution: autonomic computing, which, in a
larger sense, means “computing systems that can manage themselves given high-level objectives
from administrators”. A very interesting and powerful significance is held by the term “autonomic”
itself, because of its biological connotation: the autonomic nervous system governs heart rate and
body temperature. Furthermore, it is a know scientific fact that people who suffer from high or low
blood pressure cannot control it by using their conscious brain, as this, together with the previously
mentioned heart rate and body temperature, is a function of the nervous system, handled in the
subconscious. That is to say that these functions are handled internally, with no need of intervention
from our aware mind. We do however expect them to always happen, and, more importantly, the
way these functions take place are sometimes influenced by the current string of events. The
conclusion that can be drawn from these facts is that some functions can be handled by the system
itself (whether it is the human body or a computer system) and done so adaptively.

At the core of the very notion of autonomic computing lies the self-management concept.
It has been defined as a reunion of four aspects: self-configuration, self-optimization, self-healing
and self-protection. These four concepts can be considered together, in a more general notion: self-
maintenance, which also defines autonomic systems. Successfully implementing one or more of
these concepts in a part of a system can lead to considering that particular part autonomic, and thus
helping the entire system become autonomous, as far as the aspects addressed in the autonomic
parts are concerned.

In the next paragraphs we emphasize the characteristics which lead to the conclusion that
the replication module we propose can be considered autonomic. This also implies that, as far as
managing replicas is autonomous in the BlobSeer distributed system.

First of all, the idea of replicating data gives the module, and, indirectly, the entire system,
a self-protection capacity. This can easily be understood if one takes into consideration what the self-
protection aspect means: the ability to defend against malicious attacks or cascading failures. One
simple example of how replicas achieve such a goal is a hardware failure, which usually may lead to a
loss of data. This is not the case when there are other replicas in the system.

Secondly, the replication module also gives the system a self-optimization capacity. As
described in the paper mentioned above [2], for systems in general, self-optimization means
“seeking ways to improve operation, identifying and seizing opportunities to make themselves more
efficient in performance or cost”. Taking this brief definition into consideration, we can easily state
that our module can perform a self-optimization function for the entire BlobSeer system. We base

6

ADAPTIVE DATA REPLICATION IN BLOBSEER

this statement on the fact that our module encourages not only a increase in the number of replicas,
but also a decrease when some data is no longer in high demand, hence lowering the storage cost. In
both cases(increase or decrease of replication factor), a performance improvement is achieved by a
better response to the clients’ demands — when a piece of information is frequently requested, the
fact that there are copies of it in the system makes it more available to the clients, which can access
it simultaneously.

As we have proved, the module brings autonomic behaviour to the system, but this
important feature does not imply that the system “knows” exactly what to do without any
intervention from the human administrators. As the paper itself stipulates, the desired effects must
be made known to the system in the form of high-level specifications of goals and constraints. It is
very important that these specifications be given accurately by the human users of the system. One
example of such specifications in our case is the replication factor that the client can specify for
his/her data.

1.3 Thesis objectives

The main purpose of this paper is to present the way the transition from static to dynamic
replication of data can be achieved, by using an adaptive data replication module. This module is
meant to be part of the project mentioned earlier, BlobSeer. This distributed service was designed to
provide data storage while dealing with the requirements characteristic to large-scale data-intensive
distributed applications [1], which can be resumed to two main aspects: heavy access concurrency
and large unstructured data, kept as blobs.

Our aim is to enhance the already existing data replication module [3], by adding the
facility of adaptively decreasing the replication factor. Thus, the adaptive replication module will be
able to maintain, increase as well as decrease the number of replicas.

1.4 Thesis outline

The reminder of this thesis is organized as follows:

Chapter 2 presents a survey of the current research efforts that deal with data replication
problems. It includes several algorithms and a description of two file systems that, at the present
time, implement such mechanisms. A short comparison with our BlobSeer Replication Module is
included, in order to highlight the various advantages and disadvantages.

Chapter 3 provides background information for the systems we used in the development of
this thesis: BlobSeer, the data storage service that will include our Replication Module, and
MonALISA, which we use for monitoring purposes. In this chapter we introduce basic information
about BlobSeer and its components and about the way they interact in order to achieve fine grain
access under heavy concurrency in a distributed storage system.

Chapter 4 presents the Replication Module’s architecture and the way we have modified it,
in order to implement the decrease of the replication factor. We also explain in detail the various
parts that the Replication Module is made up of, such as Listeners and the Replication Manager. Our
contribution in the Replication Manager is also highlighted in this chapter.

7

ADAPTIVE DATA REPLICATION IN BLOBSEER

Chapter 5 elaborates on the implementation details of the Replication Module, mainly
referring to the corresponding part of the Replication Manager that deals with the decrease of the
replication factor. There is also an explanation on how the metadata tree is updated by the Enforcer
component of the Replication Manager at the moment of a deletion of a replica, in order to ensure
consistency.

Chapter 7 focuses on evaluating our component. We include the results of several tests to
outline the influence that the modified Replication Module has on BlobSeer.

Chapter 8, which is the last chapter of this thesis, , presents the conclusions we’ve reached
while developing the Replication Module, as well as some possible future improvements that can be
made to our module.

ADAPTIVE DATA REPLICATION IN BLOBSEER

2. Related work

The idea of creating replicas of frequently accessed data when dealing with read-intensive
systems is not all that new, as we show below. It has been largely used in data management systems
similar to BlobSeer, namely Google File System (GFS) and Hadoop Distributed File System (HDFS).
The reason for this is that there are great advantages which can result from implementing
replication, such as bandwidth savings, leading to a reduction in user response time, and to an
overall improvement of the entire system. On the other hand, data replication implies some
disadvantages when dealing with a write-intensive system, because of the extra cost due to multiple
updates.

However, one must keep in mind that the algorithms and replication schemes used in
various systems may differ greatly from one system to another. The replication scheme is made up
by the set of providers at which an object is replicated. The reason for this great variety of
algorithms, some of which are presented below, is the attempt to find an optimal replication
scheme. That is to minimize the network traffic, taking into consideration the data access
frequencies (reads, writes, updates, etc.), but never disregarding the particularities of the system
itself (e.g.: architecture, desired functionality, etc.).

In the subchapters following, we present some file systems which already provide support
for autonomic data replication system. Our aim is to focus on their key features, as well as their
implied advantages and disadvantages, but especially on the way data is replicated within these
systems. We particularly point out the way in which the decrease of the replication factor is made.

2.1 SRA, AGRA

In the paper written by Thanasis Loukopoulos and Ishfag Ahmad [4] several algorithms
which deal with the Data Replication Problem, DRP, are described. The first idea to deal with this
problem was a static algorithm, called SRA. It is an algorithm based on a greedy method and is
considered to be particularly efficient within systems with high read concurrency. During this
algorithm, which is applied in stages, a benefit value is computed per storage unit. This value helps
the system decide whether an object is to be replicated at a certain site in the network or not. This
means that an object can be replicated at a site only if two conditions are met: the remaining storage
capacity of the site must be greater than the size of the object and the benefit value computed must
be positive.

However, the static replication algorithm does not behave desirably when a large
number of writes takes place in the system. This is the reason AGRA was born. AGRA stands for
adaptive genetic replication algorithm and is a dynamic algorithm inspired by Genetics, in the
sense that the initial replication scheme is associated with the initial population of chromosomes.
AGRA can be regarded as a search method based on the evolutionary concept of natural mutation
and survival of the fittest. Three different genetic search operations are applied in order to
transform an initial population, with the objective to improve its quality: selection, crossover and
mutation. The notion of chromosome represents an encoded representation of a feasible solution,
most commonly structured as a bit string. AGRA adapts to the changing environment very quickly

9

ADAPTIVE DATA REPLICATION IN BLOBSEER

and readjusts the replication scheme with solutions that are comparable to static algorithms,
according to [4].

As far as the decrease of the replication factor is concerned, the main method used is to
choose randomly which objects should be deallocated. The authors have also suggested using a
greedy method and calculating the negative impact each possible one object deallocation might
have. However, in order to estimate how beneficial a replica is, both global properties of the
object and local characteristics must be taken into consideration. The global properties consist of
whether the object is read demanding or not and how many of its replicas exist in the network.
Naturally, an object having high update ratio, but being widely distributed will have more chances
of being selected for deallocation. Also, large objects with poor local read demand are preferred
for deallocation, since this will result in freeing up more space for future allocation.

The solution we propose for decreasing the replication factor is based not on estimates,
as AGRA, but on real time measurements of the various parameters involved, such as reads,
writes, load, etc. Therefore, we can state that our method makes a decision in a more informed
manner. Moreover, the way the Replication Module is implemented, it can automatically adjust to
Data Provider failures and maintain the replication scheme.

2.2 Google File System

The Google File System (GFS) [5] is a cluster-based distributed file system whose main goal
is to satisfy the needs of the MapReduce paradigm. A GFS cluster consists of a single master and
multiple chunkservers and is accessed by multiple clients. The data files are huge and, therefore,
divided into fixed-size chunks and distributed among chunkservers. The chunk size is 64 Megabytes.
Compared with the role of the chunkservers, the role of the master is more complex, as it implies
assigning unique chunk handlers each time a new chunk is created and also storing metadata and
interacting with the chunkservers through an exchange of messages, according to the HeartBeat. As
a result of the communication between the master and the chunkservers, status information is
collected and used in making various decisions, such as replication or chunk placement decisions.

An important difference between the GFS and BlobSeer is that, while the GFS uses a fixed-
size chunk, in BlobSeer the chunk size is specified at the time of blob creation. More importantly, its
size is usually a multiple of the data size the client assumes to process in one step. This is an obvious
BlobSeer advantage, as the GFS approach, although it implies less physically stored metadata, it also
favours internal fragmentation.

Another important aspect in which the two systems differ is the way the system is able to
react to high concurrency, which involves both reading and writing operations. Both systems choose
to create new data rather than to overwrite the already existing one. However, although the GFS
allows multiple clients to append data to the same file concurrently while guaranteeing atomicity,
concurrent writes to the exact same region are not serializable, thus leading to a possibly mixed and
unreliable content of the updated region. This is not the case with BlobSeer, as it efficiently handles
concurrent writes at arbitrary offsets in the same blob, as described in Chapter 3, Section1.

As far as the dynamic replication problem is concerned, the GFS stores three replicas for
each file, but users can specify other replication levels. All chunks of files are re-replicated by the
master, as soon as the number of available replicas drops under the user-specified goal, in an
attempt to maintain the desired replication factor. There can be many reasons for the sudden

10

ADAPTIVE DATA REPLICATION IN BLOBSEER

unavailability of a replica: a chunkserver may be unavailable, the replica itself may be corrupted or a
hard disk may be disabled. When re-replicating chunks, a priority is assigned to every one of them,
based on several factors. One of the factors is how far the chunks is from its replication goal. For
example, a chunk that has lost one replica is assigned a lower priority than one that has lost two
replicas. Moreover, the system automatically increases the priority of any chunk that is blocking
client progress, in order to minimize the impact of system failures on running applications.

An additional aspect when dealing with replicas is their placement in the system. Some
criteria are taken into consideration, such as equalizing disk space usage and spreading replicas
across racks. The motivation for implementing this kind of replica placement policies is achieving the
maximum data reliability, as well as the best network bandwidth possible. Replicas are also
rebalanced by the master, who examines the current replica distribution and moves replicas for
better disk space and load balancing.

The master also checks whether the replicas are up-to-date. The replicas that are found to
no longer be up-to-date are considered “stale” and are marked for deletion. The master removes
stale replicas in its regular garbage collection. Before that, it effectively considers a stale replica not
to exist at all when it replies to client requests for chunk information [5]. In addition, it is also the
master’s prerogative to choose which existing replica to remove. Generally, it prefers to remove
those replicas found on chunkservers with below-average free space, in order to equalize disk space
usage.

2.2 Hadoop Distributed File System

The Hadoop File System [6] is the underlying storage layer of Hadoop open-source
MapReduce implementation. Its purpose is to store very large data in a reliable manner across
machines in a large cluster and to achieve transfers of those data at high bandwidth. Each file is
stored as a sequence of blocks. All blocks in a file, except the last block, have the same size. It is a
cluster-based distributed file system, and, therefore, data and metadata are decoupled. While
metadata is stored on a dedicated server, called the NameNode, data is stored on DataNodes.
Besides maintaining metadata, the NameNode also has the role of monitoring of each DataNode,
meaning to keep a record of the total storage capacity, the fraction of storage used and the number
of data transfers currently in progress. All this information is used to enable efficient space allocation
and load balancing strategies. But, most importantly, the NameNode must serve client requests.
There are some know disadvantages to this approach, which include scalability and data availability
issues. The explanation for these situations is that the NameNode becomes unresponsive as the
number of files and concurrent requests grows. Furthermore, the NameNode can be regarded as a
single point of failure for the system.

On the other hand, BlobSeer does not have this type of issues, as the role that the
NameNode has is divided in BlobSeer between the Provider Manager, whose main task is to keep
track of the Data Providers registered in the system, and the Metadata Providers, who store
information about the existing blobs in a distributed fashion.

Another major difference between HDFS and BlobSeer is that HDFS implements a single
writer, multiple readers model. BlobSeer, on the other hand, efficiently supports concurrent writes
to the same object because of its versioning based concurrency control.

11

ADAPTIVE DATA REPLICATION IN BLOBSEER

As far as the dynamic replication problem is concerned, in the HDFS the replication factor is
configurable per file. The number of replicas for a file can be specified at the moment the file is
created, but can also be changed at a later time. All decisions concerning the replication of blocks
(pieces of files) are taken by the NameNode. HDFS's reliability and performance relies mainly on the
placement of replicas. The most common case of replication factor is three. That is to say that the
system must decide where to place the three replicas. In this case, the HDFS has a specific policy:
one replica is placed on one node in the local rack, another on a different node in the local rack, and
the third one in a different node in a different rack. This policy cuts the inter-rack write traffic which
generally improves write performance, without compromising data reliability or read performance.

When trying to satisfy a read request, HDFS tries to access the replica that is closest to the
reader. Thus the global bandwidth consumption and read latency are minimized. In case a replica
exists on the same rack as the reader node, that replica is preferred.

As it can easily be noticed, the two systems are alike, in the respect that both allow the
replication factor for a blob/file to be specified at creation. However, BlobSeer’s approach is based
on the read/write fluctuations, being able to dynamically increase or decrease the replication factor.
This means much more efficient storing, by using the storage space available for frequently
requested data and not keeping it occupied with copies of unrequested files. Indeed, BlobSeer’s
Replication Module can make a well-informed decision when modifying the replication factor, as it
has a up-to-date view of the system, thus bringing a series of advantages to this distributed file
system: reliable data storage, easily adaptable to failures a dynamically-adjusting replication scheme
that is optimized to use less storage resources.

12

ADAPTIVE DATA REPLICATION IN BLOBSEER

3. Background

3.1 BlobSeer

BlobSeer [7][8] is a highly scalable data storage and management service designed to deal
with requirements of large-scale data-intensive distributed applications. In this section we describe
the system’s architecture, the way interactions take place between its entities and the access
interface put at the disposal of the clients. Moreover, we stress the main features that make
BlobSeer different from other distributed systems and contribute to the enhancement of
concurrency.

3.1.1 BlobSeer’s Architecture

Data in BlobSeer is abstracted as a large sequence of bytes and stored as blobs (Binary
Large OBjects), meaning very large files. Similarly to other data storage services, BlobSeer addresses
the well-known storage challenges, which include heavy access concurrency, data versioning, large
aggregated storage space and fine grain access.

What truly makes BlobSeer stand out from all other data storage services is that it is the
only one that supports concurrent writes, reads and appends, while versioning the files and
providing fine grained access to them.

Metadata

Figure 1. BlobSeer’s Architecture

BlobSeer’s infrastructure[7] consists of a set of distributed processes, that interact with
each other in various ways, as described in the next section. The various roles “played” in the
system are described below.

Clients may perform various operations, such as creating, reading, writing and appending
blobs. There may be multiple concurrent clients, both for reading and writing new data, and their
number may dynamically vary in time.

13

ADAPTIVE DATA REPLICATION IN BLOBSEER

Data Providers physically store the pages generated by the write and append operations.
New data providers may dynamically join and leave the system.

The Provider Manager keeps information about the available storage space and
schedules the placement of newly generated pages according to a load balancing strategy. The
main purpose behind this type of strategy is to ensure a balanced distribution of data in the
system, thus eliminating the possibility of overloading one Data Provider.

Metadata providers physically store the metadata allowing clients to find the pages
corresponding to the blob snapshot version. Metadata is organized as a segment-tree like
structure and is scattered across the system using a Distributed Hash Table (DHT). The distribution
of data and metadata is another key characteristic that differentiates BlobSeer from other data
storage services. More detailed information about metadata can be found in Chapter 5.

The Version Manager is the key actor of the system. It registers update requests (append
and write operations), assigns snapshot version numbers, and, eventually, publishes new blob
versions, while guaranteeing total ordering and atomicity.

3.1.2 Interactions between BlobSeer entities

The interactions between BlobSeer’s entities are illustrated below, in Figure 2. They can
easily be explained by observing and understanding how the read and write operations work[7][9].

a Dare Metadota Versioning Provider Client Deta Mewdawa Versioning Provider
iens Providers Providers Manoger Manager Providers Providers Manager Manager
datgorovider forpach page?
geb latesznapshot Rersion It of providess >
yr)
< wiile poye
ta forv -
ACKs

requesy snapshot vegsior

write metaiata for vw

b
< acs 1 >
: walt for reporfsuccess
» all replios ACK >
v
Tt v raturn vw

Figure 2. Interactions inside BlobSeer:
READ (left) and WRITE (right)

Reading data In order to read data, clients must first contact the Version Manager. Some
information is required from the client, such as a blob id, a specific version of that blob, and a range,
which translates into an offset and a size. If the version has been published and is, therefore,
available, the client then queries the Metadata Providers for the metadata indicating on which
providers the corresponding pages are stored. Finally, the client fetches the pages in parallel from
the respective data providers.

14

ADAPTIVE DATA REPLICATION IN BLOBSEER

Writing and appending data In order to write data, the client first determines the number
of pages that cover the range to be written. It then contacts the Provider Manager and requests a list
of Data Providers able to store the pages. Afterwards,in parallel, the client generates a globally
unique page id for each page, contacts the corresponding page provider and stores the contents of
the page on it. After an acknowledgment is received from each Data Provider, the client contacts the
Version Manager and requests a new version number. This version number is then used by the client
to generate the corresponding new metadata. Finally, the client notifies the Version Manager of
success, and returns successfully to the user. At this point, the Version Manager is responsible for
eventually publishing the new version of the BLOB.

One may consider the append operation as a particular case of write, where the offset is
implicitly the size of the previously published snapshot version. The detailed algorithms for the
described operations are given in [7].

3.1.3 Access interface

As mentioned above, clienta are allowed to create blobs, to read from already existing
blobs starting from an offset and to write or append a range to the blob. All these operations can be
performed by the client simply by using the given interface. In this section, we describe the
primitives available, including the newest addition to the system, a delete primitive.

To create a blob, clients must call the CREATE primitive.Because blobs are uniquely
identified in the system, this primitive returns the id associated to the newly-generated blob.

id = CREATE()

In order to read data, the client must provide certain parameters: the blob id and version,
the desired range, which translated into an offset and a size, and a local buffer where the fetched
data will be placed.

READ(id, v, buffer, offset, size)

Things happen in a similar fashion in the case of the WRITE and APPEND primitives. The
only difference is that the buffer provided is now used as the source for the written data. As the
APPEND primitive is regarded as a particular case of WRITE, the offset is no longer needed. It is
implicitly considered to be the size of the last previous version.

vw = WRITE(id, buffer, offset, size)
va = APPEND(id, buffer, size)
Some helping primitives are:
v = GET_RECENT(id)
size = GET_SIZE(id, v)
whose rolea are to provide the latest version of the desired blob, respectively to return the exact size
of the blob snapshot corresponding to version v of the blob identified by id.

The most recently added primitives are those which allow the client to delete data from
BlobSeer[10]. Both primitives are described below.

To delete a version of a particular blob, a client must call the DELETE primitive:

DELETE(id, v)

To delete old data, meaning all snapshot versions lower than a particular version labeled v,
a client must call the primitive:

DELETE_EARLIER(id, v)

15

ADAPTIVE DATA REPLICATION IN BLOBSEER

The simplicity of access interface comes to show once more that the user does not have to
be aware of data or metadata location as these are handled transparently by the storage service.
More than that, versioning is provided at the application level so that one client can read from any
published snapshot of a blob while other generates new versions of the same blob without the need
for synchronization. The corresponding algorithms of this series of primitives are presented in detail
in[11].

3.2 MonALISA

In order to make an informed decision to decrease the replication factor of a file at version
level, we use data collected by MonALISA[12].

MonALISA, which stands for Monitoring Agents in a Large Integrated Services Architecture,
is a framework based on Dynamic Distributed Service Architecture. Its main purpose is to provide
complete monitoring, control and global optimization services for complex systems.

The MonALISA system is designed as an ensemble of autonomous multi-threaded, self-
describing agent-based subsystems which are registered as dynamic services, and are able to
collaborate and cooperate in performing a wide range of information gathering and processing tasks.
Its features and flexibility recommend it for monitoring in large distributed systems, as shown here
[23].

In our project, MonALISA plays a very important role in both directly providing information
about the load and the free space of each data provider and computing metrics based on data
collected from the agents that monitor the providers, thus determining the changes that take place
in the read/write frequencies for a file.

All the metrics data obtained will be combined and used by the Adaptive Data Replication
Module, which is described in Chapter 4 below, in order to accurately decide whether to increase or
decrease the replication factor of a blob. To add MonALISA support, we used the MonALISA Service
and the MonALISA Repository. The MonALISA Service receives information regarding the number of
reads and writes for a blob through BlobSeer’s monitoring support [14] . The MonALISA Repository is
used to monitor the data providers for parameters such as free space and load. More detailed
information can be found in Chapter 5, which describes the implementation of our proposed
module.

16

ADAPTIVE DATA REPLICATION IN BLOBSEER

4. Adaptive Replication Module

The main purpose of this module is to coordinate the creation and/or deletion of replicas in
the system, thus making it more responsive to client demands and more stable as far as the ability to
react to faults is concerned. As this whole module is relatively new, compared with the rest of the
system, its components as well as the interactions between them and the already existing parts of

BlobSeer are described below.

4.1 Replication Architecture Overview

The Adaptive Data Replication Module architecture [3] is illustrated in Figure 3. The
Replication Module brings two new elements to BlobSeer: Listeners and the Replication Manager.
These two new entities can be considered distributed communicating processes, in the exact same
way Data Providers, Metadata Providers, the Provider Manager and the Version Manager are

regarded.

- Providers <

—

Provides
Manager

Pttt Rt e
Dead
[: Wiite-Page
Provder .
] amcn‘l Messages

L Key Value
Replication 10 provider 1| Stored pages =
Module 10 provider 2 | Stored pages

Figure 3. Replication Module

ADAPTIVE DATA REPLICATION IN BLOBSEER

Listeners The role of the Listeners is to send status update messages to the
Replication Manager in order to ensure that it has all the necessary information it requires to
function properly. These Listeners can be regarded as intermediaries between the Replication
Manager on one hand and the Provider Manager and the Data Providers on the other.

Status-update messages sent from the data providers contain information about the
availability of a provider and the write-page events which are triggered when content is being
written to a page.

The status-update messages sent from the Provider Manager are triggered immediately
after the Provider Manager acknowledges the unavailability of a storage provider.

The Replication Manager This is the main component that, combined with the
Listeners described above and helped by the monitoring contribution of MonALISA Service and
Repository, decides whether and how replication has to take place in the system. Its role is to
maintain, increase and decrease the replication factor for the existing blobs, based on the
information it receives from the Listeners, which it analyses and compares with the results computed
internally, by parsing logs and determining whether the number of page-reads or page-writes
indicates a need for a increase/decrease in the replication factor .

4.2 lllustration of the functionalities of the Replication Module

The Replication Module is currently able to maintain and increase the replication factor[3].
In the next two subchapters we present the capabilities of the Replication Module before our
alterations were performed. This capabilities refer mainly to the ability to maintain and/or increase
the replication factor of blobs. Our contribution, first schematically, and afterwards in more detail, is
presented beginning with subchapter 3 — Zoom in on the Replication Manager. Our aim is to focus
entirely on instrumenting the decrease decision for the blobs in the system, by taking into
consideration both the monitored data and the client’s needs.

Below we show some scenarios when maintenance or increase are considered to be
needed by the Replication Manager, with the help of the Listeners and by analyzing the data
received from the monitoring service, namely Monalisa, using the filters specifically designed to
monitor BlobSeer-oriented data (e.g.: reads/ writes for a blob or a page, load, etc.).

4.2.1 Maintaining the replication factor

The first important aspect that the Replication Module was meant to solve was the ability
to maintain the replication factor. This was achieved by designing the Replication Manager to
communicat with the Provider Manager, the the Metadata Providers, as well as with the Data
Providers themselves. Every available Provider announces its presence to the Replication Manager.
Moreover, every time a write occurs on a Provider, the Replication Manager is directly informed and
stores this information for every Provider. Thus, when the Provider Manager indicates that a Data
Provider is no longer available(for hardware or software issues, or simply because it has left the
system), the Replication Manager knows exactly what pages of what blobs were stored on the said

18

ADAPTIVE DATA REPLICATION IN BLOBSEER

Provider and is able to replicate elsewhere, provided that the only existant copy was not on the
unavailable Data Provider.

What this achieves is a much needed fault tolerant solution implemented in a system in
which the described types of failure are more likely to be the rule than the exception. Below we
present a typical scenario in which the decision to maintain the replication factor is made.

Provider
Manager 1 2 4 5 6

Dead Write-
Provider Page
Detection Messages

Status Update

| Listener _{ Replication Manager

Key Value

Provider 1 Page 1, Page 7, Page 5

Provider 2 Page 2, Page 8, Page 6

Provider 4 Page 4, Page 2, Page 8

+——

Provider 5 Page 5, Page 3 Replication
Module
Provider 6 Page 6, Page 4

Figure 4. Maintaining the replication factor

Here, we can see that there are 6 Data Providers available in the system at one time. There
is only one blob and it has a desired replication factor, given on creation, of 2. At a later point in
time, the third Data Provider fails and this is where the Replication Manager steps in. It takes action
to create copies of the first, third and seventh page on the other Data Providers, thus ensuring that
the replication factor for all the pages that make up the blob is maintained. However, one most take
into consideration that there are no duplicates accepted for a page. In the case presented above, this
means that Page 1, which needs to be copied somewhere else, will be placed anywhere else except
on Provider 1, because it already contains a copy of Page 1.

Not accepting duplicates on a Data Provider means not allowing a single point of failure
and, consequently, not losing all the available replicas of a page in the case of a crash. On the other
hand, this can become an issue when the number of providers in the system is low and there are no

19

ADAPTIVE DATA REPLICATION IN BLOBSEER

providers left to receive the pages. This issues has been dealt with by adding a vector that contains
each key that the Replication Manager was unable to store a copy of. It is the first to be analysed
when a Data Provider becomes available.

4.2.1 Increasing the replication factor

The second important aspect the Replication Manager deals with is deciding when to
increase the replication factor of a blob. This decision is made by analyzing various monitored
parameters, such as load5, bandwidth and free memory, for every Data Provider in the system.
The replication factor is increased for a blob when the Data Providers that store its pages are
under very much pressure, meaning that there is not much free memory left, bandwidth is high,
etc. The explanation for this method is that a Data Provider found in the conditions mentioned

above is more likely to fail than the others.

In the picture below, we have such a scenario, which illustrates the instrumentation of
the decrease decision based on the load of the machines.

Load5 increases Providers
on Provider 1
Provider
Manager '
/ Dead . R R PR
: Write-Page \
Provider
I Detection Messages !
. o : Monitored
| atus-Update Replication N information
I Listener l:'ngsr r ;
1
1
: Key Value !
1
: [Provider 1 |Page1. Page7, Page5| 1 Provider Loads
" Provider 2 | Page2, Page8, Page6 : 1 034
: Provider 3 |Page3 Page1, Page7 1 1 13
I Replication Provider 4 | Paged, Page2, Page8 : (1 7.6]
I Module d
| Provider 5 |Page5, Page3 :
| Provider 6 | Page6, Paged)
/
\
s or or or on oGP EP ED G ED ED EE G G EP ED EP G GP GP GD G GF GD GD G GP G GP P GP GD 6P GF GF G G e

Figure 5. Increasing the replication factor

20

ADAPTIVE DATA REPLICATION IN BLOBSEER

This example shows a blob with 8 pages, with a replication factor of 2. The monitoring data
is taken from the MonALISA Repository through a PostgreSQL database. Because the load has
increased on provider 1, the pages kept on it will also be copied elsewhere, increasing thus their
replication factor. The Replication Manager reaches this decision by taking into consideration the
value 4, which has been established as the normal threshold for load5.

The Replication Manager may also take into consideration other parameters, such as the
number of reads registered for a blob. It is reasonable to increase the replication factor of a blob by
looking at the overall demand for its contents and establishing in this manner the general interest for
that content.

4.3 Zoom in on the Replication Manager

The Replication Manager also cotains four new components, which we describe in the
following paragraphs. The main purpose behind introducing these new components was addressing
the issue of decreasing the replication factor, depending on the state that the system is in. That is to
say making the decision of marking as deleted a replica in the metadata tree and enforcing this
decision by actually deleting the information from the selected Data Provider. It should be
mentioned that it is very likely that more than one copy be submitted for deletion at a given time.

Replication Manager

Context

Analyser

Decision
Maker

ProviderList

Enforcer

Listener
Information

Extractor

Analyse i Decide i Delete

Figure 6. Replication Manager — decrease replication factor

ContextAnalyser Its main purpose is to keep track of the given situation scenarios and
interrogate the MonALISA database in order to discover whether any of the predefined scenarios is
applicable in the current situation. In the first stage of the implementation of this project, the
scenarios are kept as simple text files. Each of them specifies a certain rule. For instance, by
analysing the monitoring data, the system can decide whether the number of reads/writes per time
unit for a page is under a certain limit, specified in a scenario. If the system comes to the conclusion
that one or more scenarios are present, it returns a list of data providers from which to remove the
page in question, in order to decrease the replication factor.

21

ADAPTIVE DATA REPLICATION IN BLOBSEER

However, one should keep in mind that the time unit may vary, according to how reactive
the system is desired to be, or by taking into consideration the type and frequency of the operations
that take place. For example, the time unit may be set anywhere between ten minutes and a given
number of days.

ListenerInformationExtractor Its aim is to collect information from the Listeners
and interpret it. An example of its use is the monitoring of the write operations performed. If the
ListenerInformationExtractor finds the number of writes below a certain limit for a particular page, it
can suggest one or more data providers to have their replicas of that page removed. Another case in
which this component might decide to decrease the replication factor is when it receives information
regarding the low free space of one or more data providers.

DecisionMaker It compares the results given to it by the two previous modules (the
ContextAnalyser and the ListenerInformationExtractor) and thus reaches a decision whether a
decrease in the number of replicas is indeed required. If the decision is to go forward with the
decrease of the replicas, a list of data providers is passed on to the Enforcer.

Enforcer It implements the deletion itself from the Data Provider(s), as well as the
modification of the metadata tree, as we describe in Chapter 5, together with other
implementation details. Although the decision to decrease the number of existing replicas is taken
at a version level, it may include only some of the pages characteristic to a version, that is to say
not all of the pages will have the same replication number, but different ones according to their
usage. This is one of the most obvious aspects that suggest the adaptive nature of the system as
enforced by the Replication Manager.

4.4 lllustration of the solution

In the example illustrated below, we show a typical situation in which the Replication
Manager, or, more specifically, the Decision Maker component, would decide to decrease the
replication factor for a blob.

The Data Providers are monitored using the MonALISA Service. The obtained data is stored
in the MonALISA Repository and it can easily be accessed through sqgl queries made to the
PostgreSQL database server used by the Repository. The parameters used may vary. We have used
load5, bandwidth and free space. In the example given, however, we highlight only those monitored
parameters that are in accordance with those parameters mentioned in the scenario. Detailed
explanations about the possible scenarios can be found in subchapter 4 of the current chapter.

The Replication Manager communicates with the Provider Manager, which informs it about
the Data Providers that are no longer available, using the Listener as an intermediary. It also receives
information directly from the Providers when they become available in the system and when a write
event takes place. This explains how the Replication Manager knows the exact association (key -
value) between the Providers and the exact pages that are stored on them.

One of our main goals was to make the system as responsive as the client wants it to be.
We enabled this type of behaviour by giving the Replication Manager direct access to the clients’
requirements. The clients can express the behaviour they expect the system to have by specifying
various parameters’ limits, structured as scenario files. In our project, the scenarios are kept as
simple text files, their content being interpreted as rules by the system. Basically, this means that, as
long as those rules are obeyed, the system can take whatever action it decides. However, when

22

ADAPTIVE DATA REPLICATION IN BLOBSEER

those rules are broken, certain actions must take place. One must keep in mind that, although there
are more parameters in a scenario file, and, ergo, more rules, it is a must that all rules be broken
before action can to take place. For instance it makes no sense to decrease the replication factor for
a blob, when, even if there are no reads, there are write actions accessing it. This indicates the need
for that particular blob is still high.

In the scenario below, 5 parameters are taken into consideration: replication factor,
number of reads and writes, load and query interval. For instance, the number of minimum replicas
the client wants to have in the system at all times is 1. This parameter can be considered redundant,
as there is always at least one copy available. However, taking into consideration the most recent
work concerning the delete primitives, one might interpret the given replication factor 1 as an
indicator of never deleting that data. Also, the client mentions there must be at least one read per
interval, but no write is required.

! Providers ;

| ' ’ ‘ |

!)

1 '

1 '

! L

1 '

1 '

! '

1 1

De‘ag _____ N
provider
messa i e
‘_’ggs__ “Write T .
Replication Module N Monitored
. messages \] ;

\ information

v

E Monitored

! Load 5

E Reads 0

. i writes 0

‘ Provider 1 Pagel,Page5, Page3 _ '

' Provider 2 Page2, Page 6, Page4 Client :

; Provider 3 Page3, Pagel, Page5 requirements| |

s Provider 4 Page4,Page 2, Page6 |

E l _i_ Scenario

, Interval 3
' E Load 2
: ! Reads 1
' Provider 1 Pagel,Page5 : Wirites 0
iy Provider 2 Page2,Page6 ’,‘ Replicas 1

\ Provider 3 Page3 ’
“ Provider 4 Page4 s’

Figure 7. Replication Manager — scenario to decrease replication factor

23

ADAPTIVE DATA REPLICATION IN BLOBSEER

In our example, there are 4 Providers and one blob made up of 6 pages. The current
replication factor of the blob is 2. The chosen number of Data Providers is only to enhance the
simplicity of the example. Our solution scales very well no matter how large the available numer of
Providers is. Although the scenario file mentions 1 necessary replica, this only indicates the minimum
required number of replicas. We might imagine that the blob’s replication factor has been previously
decided by the Replication Module. By comparing the monitored information and the information
extracted by the Listener with the client’s scenario, the DecisionMaker component of the Replication
Manager triggers the decrease replication factor action, as it can be seen above, in the modified
page table.

Another important aspect we need to highlight is that the interval parameter is the one
that actually controls the flexibility of the system, as it indicates the frequency with which the
database is interrogated. The longer the time period is, the less reactive to changes is the entire
system.

4.5 Modifying the metadata tree

Metadata[7] stores information about the pages which make up a given blob, for each
generated snapshot version. In order to keep the versions as transparent as possible, BlobSeer
creates new metadata every time an update takes place. This helps provide support for heavy
concurrency, as it favors independent concurrent accesses to metadata without synchronization.

Metadata is organized as a distributed segment tree. There is one such tree associated to
every snapshot version of a given blob id. A segment tree is a binary tree in which each node is
associated to a range of the blob, delimited by offset and size. A node is said to cover a range,
defined by a (offset, size) pair. Each leaf of the tree is considered to cover one single page.

Figure 5(a) below shows the structure of the metadata for a blob consisting of four pages.
The root of the tree covers the range (0, 4), while each leaf covers exactly one page in this range.

The metadata tree is created when the first pages of the blob are written, for the range
covered by those pages. In order to avoid overhead, new tree nodes are created only for the ranges
that do intersect with the range of the update.

Figure 5(b) below shows how metadata evolves when pages 2 and 3 are modified for the
first time.

The append operations make the blob “grow”, as shown in Figure 5(c). Here, new metadata
tree nodes are generated, to take into account the creation of a fifth page by an append operation.

24

ADAPTIVE DATA REPLICATION IN BLOBSEER

(@) The metadata af- (b) The metadata after (c) The metadata after an ap-
ter a write of four overwriting two pages pend of one page

pages
Figure 8. BlobSeer’s Metadata Representation

Taking into consideration the way metadata is stored, our implementation of the adaptive
Replication Module involves also updating the metadata tree. This step is taken by the Enforcer
component from the Replication Manager. In this case, updating means traversing the metadata tree
until the leaves are reached, look for the given providers in the list of providers that is found in every
page and either delete them entirely from the list or just mark them as not available anymore, for
that particular page. This entire method is presented in Figure 6 below.

Afterwards, there is one last important step : informing the root of the metadata tree of
the modifications made, because it needs to modify the replication_count accordingly, thus
maintaining consistency.

Figure 9. Modifying the metadata tree

25

ADAPTIVE DATA REPLICATION IN BLOBSEER

4.6 Algorithm used

Below we show in pseudo-code the algorithm used by the Replication Manager when
deciding whether to decrease the replication factor or not.

Algorithm 1 DECREASE REPLICATION FACTOR

Require: The monitoring database
Require: The scenario file

1: read scenario file and interpret it

2: repeat from interval to interval

3 query database -> result

4 for each element in result

5: compare monitored data with scenario information

6: if all rules are broken

7 decide to decrease

8 for all pages in blob

9: call Enforcer component to decrease replication factor
10: end for
11: endif

12: end for

13: end repeat

The first thing the Replication Manager does is to read the scenario file provided by the
client. The scenario files are in accordance with what is described in the next chapter. For the
current implementation, the Replication Manager reads and interprets only one such file, and
assumes the limits given there are applicable for all the blobs in the system. As a future
improvement, we believe it is possible to alter the create primitive and provide it with an additional
parameter — the scenario file for the blob.

The next step is to query the database for updates from interval to interval. The frequency
at which the database is interrogated is given by the client in the scenario file. This is a very
important aspect, which ensures the system is as reactive as the client wants it to be. For every new
element in the query’s result, the Replication Manager compares the monitored information with
the one provided in the scenarios. This part of the application corresponds to the DecisionMaker
described earlier. The decision to decrease the replication factor is made by taking into
consideration all the rules the client chose to include in the scenario files. This method ensures all
decisions are taken when they are really needed and the unnecessary deletion of a copy, only to
increase the replication factor in the next step of the algorithm, is prevented.

26

ADAPTIVE DATA REPLICATION IN BLOBSEER

The final step is to call the Enforcer component to physically decrease the replication
factor. The way this component works is explained in detail below, after a pseudo-code for its’ steps
is presented.

Algorithm 2 ENFORCER DELETE

Require: The page
Require: The provider/list of providers

1: if page is in the unresolved key list then

2: decrement unresolved replicas

if remaining unresolved replicas == 0 then
remove page from unresolved key list

end if

delete (invalidate) page on the given provider(s)

3

4

5:

6: else
7.

8 update metadata
9

:end if

When the Enforcer has to delete one replica, it first looks in the unresolved key list to see if
the respective page is already there. If this is the case, this means that, at a certain moment in the
past, the Replication Manager decided to increase that page’s replication factor. However, for
various reasons, this was not possible at that particular time and, therefore, the page was added to
the unresolved key list. It makes perfect sense, when decreasing the replication factor by 1 to first
decrement the unresolved replicas, because otherwise, things would happen as follows: a replica
would be deleted, and afterwards, the Replication Module would try to see whether there are any
unresolved pages which can be now copied on the existing Data Providers, taking advantage of the
now free space that exists and respecting the rule to not have duplicates of the same page on one
Data Provider. Basically, the decrement and, eventually, delete of a member of the unresolved key
list can be regarded as a “soft” deletion of replicas, bringing the advantage of fewer operations and
messages exchanged in the system, thus reducing the overhead.

If the page whose replication factor has to be decreased is not in the unresolved key list, a
Data Provider that contains a replica of the page is looked up and the replica is invalidated.
Afterwards, the metadata tree is updated, as was explained in detail in the previous subchapter.

27

ADAPTIVE DATA REPLICATION IN BLOBSEER

5. Implementation details

The Adaptive Data Replication Module [3] was implemented as a separate module that
communicates with the Provider Manager, the Data and Metadata Providers. What we have done is
to modify the already existing Replication Module in order for it to be to provide efficient decrease
of the replication factor. We have done so by adding several components, such as the Enforcer and
the Decision Maker, which were described in detail in the previous chapter.

Our implementation is for C++, making it thus easier to integrate with the rest of the
BlobSeer modules.

5.1 Data structures and interactions scheme

This section introduces the data structures involved in our implementation with the help of
UML class and sequence diagrams. Some attributes and methods have been left out, and only those
relevant to our implementation have been shown in the diagram below. The second diagram gives
further details on the interactions which take place between the Replication Module and the other
entities of the system during one interval (meaning every time the watchdog queries the data base
and finds updates).

The class diagram presented in Figure 10 below shows the most important part of the

composition of the Replication Manager class. Its aim is to do this as accurately as possible, although
some minor fields characteristic to the class have been left out of the diagram for simplicity reasons.
Moreover, it comes to show the exact relationship between the fields and methods of the
Replication Manager class and the ones that already exist in the system.
For instance, the type query_t is used in the definition of the unresolved keys vector. The query_t
class is part of the common data structures. Its purpose is to help define a read or a write request,
while also being able to completely identify a data page or a metadata node. This is the reason why
this class can be regarded from two different angles, which also can be seen in the class diagram. The
fields that this class contains basically speak for themselves, as far as their use is concerned: offset,
size, version and id are obviously fields that are used to define a page in BlobSeer, but also the
location of the distributed metadata.

The first point of view is the one of the root_t class, which defines its node field as a query_t
object. On the other hand, the dhtnode_t class uses the query_t class to define a node containing
metadata information. Our implementation uses both points of view. The first one is used when
analyzing read and/or write messages sent across the system. The second perspective is used mainly
when altering the metadata tree as shown above.

28

ADAPTIVE DATA REPLICATION IN BLOBSEER

Class Diagram

repl_manager

- crt_revision_number : uint64_t

- crt_revision_number_writes : uint64_t

- key_replcount : key_replication_map=string, uint32_t=
- providers_map : p_map<=string, query_t=

- unresolved_keys: vector=query_t, uint32_t=

+ get_replicas(replica_policy_t, query_t): bool

+ get_new_providers(replica_list_t, uint64_t) : bool
+ init_db(string, string, string) : bool

+ monitor_watchdog_exec(): void

+ monitor_decrease_replicas(): void

+ remove_one_replica(vector=string=) : bool

page_desc

- page_key: query_t

- providers: vector=provider_desc=

dhtmode_1t

query_t

+ get_providers() :
vector=provider_desc=

+ get_page_key() : query_t

-id - uint32_t

- version - uint32_t
- offset : uint64_t
- size - uint64_t

|

provider_desc

- host : string
- service: string

+ empty() : bool

+ operator==(query_t) : bool
+ empty() : bool

\

root_t
- node: query_t
- replica_count : uint32_t
- current_size - uint64_t
- page_size : uint64_t
+ empty() : bool

Figure 10. Replication Module — class diagram

- is_leaf : bool
- left - query_t
- right - query_t

+ loadBearing() : boolean

The interactions diagram shown below comes to highlight the most important steps the
Replication Manager makes during every interval. These steps respect the algorithms shown in the
previous subchapter. Our air when designing this interactions diagram was to bring forth the way the
system entities communicate with each other during every interval.

The first step is to communicate with the server database. This is not actually a BlobSeer

entity, but, as we have stressed in the Appendixes, one cannot run our implementation without first
ensuring there is a running PostgreSQL server in the system. During the next steps, the Replication
Module also “discusses” with the Data and Metadata Providers.

29

ADAPTIVE DATA REPLICATION IN BLOBSEER

Replication Module - interactions in one interval

Database Replication Module Metadata Provider Data Provider

result

decrease replication
decision is made

choose one
replica to delete

Figure 11. Replication Module - interactions

5.2 Scenario files

In this subchapter, we present in detail what the scenario files mean and show an example,

which we then discuss. The scenario files make up the part of the Replication Module that puts all
the self-adjustment capabilities of the system, and, therefore its entire power, at the reach of the
client. By modifying various parameters, the client can control how flexible the system is. Here is an
example of such a scenario file:

<scenario>
<interval>30</interval>
<load>0.2</load>
<nr_of reads_perinterval>7</nr_of_reads_perinterval >
30

ADAPTIVE DATA REPLICATION IN BLOBSEER

<desired_number_of replicas>2</desired_number_of replicas >
<nr_of writes_perinterval>3</nr_of_writes_perinterval >
</scenario>

The order in which the parameters are given is not important. However, at this stage of
implementation of our Replication Module, these are the only available parameters that the client
may use. Furthermore, the current implementation has another limitation which we are aware of:
only one single scenario file is permitted per run, no matter how many blobs are created. In the
future, we may considered altering the create primitive, in order to make it accept a scenario file per
blob.

The most important parameter is the interval. It indicates the rate at which the module
queries the database that contains the monitored information. This parameter is indicated in
minutes, and there is no required range of its value.

Secondly, a very important role is played by the desired_number_of replicas. No matter
what happens in the system, the Replication Module is not allowed to decrease the replication factor
lower than this threshold. It is allowed, on the other hand to further increase it if necessary.
Therefore, this parameter can be seen as a “low limit” for the replication factor.

This is also the case when it comes to the nr_of reads_perinterval and the
nr_of_writes_perinterval. The situation is exactly the opposite for the load parameter, whose value
can be interpreted as a “high limit”. Any higher value than the given number can justify a decrease of
the replication factor for the pages situated on the monitored Data Provider.

Another crucial aspect is the fact that all rules are taken into consideration when a
decrease decision is made. This means that it is not enough for only one threshold to be exceeded. In
order to make a decision which doesn’t contravene with the requirements of the client , all the
given thresholds must be exceeded. On the other hand, we must mention that the client is not
forced to provide values for all these parameters. If, for instance the he/she is not interested in the
number of writes that happen in a interval of time, this parameter can be left out of the scenario file.
If no value is provided for the interval parameter, a default one is used.

5.3 Important data structures used

One key aspect we must point out is that, although the Replication Module interacts
constantly with the other entities of the system, as was presented in the previous subchapter, it
tends to not rely on the data they give, but to store and use its own personal findings. This is the
case, for instance with the providers_map and the key_replcount. What happens exactly is that, as
the Replication Manager runs, it collects information about everything else that goes on in the
system. By storing locally this type of data, the Replication Manager brings forth two big advantages:
reduced overhead, when trying to compute something based on these data, and avoidance of the
single point of failure.

Another very important data structure is the unresolved key list, which is made up of keys
— following the pattern: <id, version, offset, page_size> and values — the number of replicas needed
in the system, but not yet created because of various reasons, such as lack of space of available Data
Providers.

31

ADAPTIVE DATA REPLICATION IN BLOBSEER

6. Experimental results

The Adaptive Data Replication Module that we modified and then included in the BlobSeer
architecture is meant to deal with the problems of maintaining, increasing and decreasing the
replication factor of blobs. We have concentrated our tests on the decrease part of the Replication
Module, aiming to point out the way it modifies BlobSeer’s performance.

The communication between the Replication Module and BlobSeer is achieved through
Remote Procedure Call (RPC) messages using either TCP or UDP in order to send them across the
network. Therefore, one of the main metrics used in evaluating our module is the overhead it
induces to the system. The aim of such tests is to show exactly how intrusive the module we
designed is.

Moreover, another important aspect to take into consideration is the delay required by our
system to respond. That is to say, how much time it takes until the Replication Module decides to
modify the replication factor. This, although it may not seem as a particularly important aspect, is in
fact crucial for the cloud environment in which BlobSeer is meant to work, because, as you know,
time is money as far as clouds are concerned.

6.1 Testing scenario

As a testing environment, we have used one or two machines, depending on the particular
scenarios. The machines used are identical and have dual core processors, 2 GB of RAM and 20GB
hard disks. These features where enough for our testing purposes, as we did not aim to include huge
blobs in our testing scenarios. We have tested mainly with 256MB blobs, with a page size of 64KB. All
the results presented in the next subchapter are obtained using these particular numbers. We have
chosen these numbers, because we consider that they make excellent medium values, and have also
been used in the sample programs provided in BlobSeer. However, we must mention that there were
no striking differences when testing with other page or blob sizes.

Furthermore, we believe that scaling the results is also possible, as the rules still apply no
matter how many blobs there are in the system. By rules, we understand the patterns and
tendencies we have observed by comparing and contrasting the system’s performance with and
without our module included.

A typical used scenario was comprised of the creation of one or more blobs, writing data to
these blobs and then developing a write-read pattern made to determine the creation of replicas in
the system. Afterwards, the reads and writes dropped below the limits given by the client, and we
were able to observe and make record of the performance of the system, while the replication factor
was being decreased by the Replication Manager.

From this point forward we present some of our most important findings as far as test
results are concerned. Every graph is explained in detail and all results are interpreted.

32

ADAPTIVE DATA REPLICATION IN BLOBSEER

6.2 Test results

In this subchapter we present the results we have obtained from the performed tests
and explain in detail what significance they bare to the entire system.

Our first concern was to observe the overhead introduced by using our Replication
Module in BlobSeer. We did this by measuring the load5 parameter while running the tests
mentioned in the previous chapter on both the same version of BlobSeer (release 0.4), with or
without the Replication Module included. In Figure 12 below we have represented the obtained
values.

Load comparison

1,8 i\
1,6

1,4 %
1,2

0,6

0,4 -
0,2 -

Load

==@==| 0ad without replication

=== oad with replication

Time

Figure 12. Load5 results

These results are not at all surprising, as it would have been expected to have a higher
load for the release version with the included Replication Module. However, at a closer look, one
can see that there is a big period of time for which the load5 parameter is actually lower with the
Replication Module. This means that the module has achieved its goal and the replicas created in
the system make access a lot easier and faster. The only times when the load is higher for our
modified version of BlobSeer is when replicas are created or deleted from the system.

Our conclusions for this test are that, although the load is sometimes higher than in the
unmodified version, it is at an acceptable value, thus showing the Replication Module is not very
intrusive and does not affect dramatically the overall performance of the system. On the contrary,
there are cases when it improves BlobSeer’s performance.

The next parameter we took into consideration was the amount of free memory left in
the system. This is actually a very powerful indicator of the intrusiveness and efficiency of our
module. The results are shown in Figure 13 below.

33

ADAPTIVE DATA REPLICATION IN BLOBSEER

Free memory comparison

60

50

40

30
=== without replication module
20

== with replication module

Free Memory (MB)

10

0 5 10 15 20 25 30 35

Time (minutes)

Figure 13. Comparative free memory results

As you can see, the average free memory is of 50MB. The fact that our module does not
stray far from this figure is very important and not to be taken likely. It is another powerful indicator
that recommends our module. However, we must observe the trends visible in both cases. With the
Replication Module inserted, the tendency is to go a little below the average values, which means a
little more memory used. This was to be expected, as there are more messages passed in the system
and there is more stored data (the replicas created). In contrast, the average without the Replication
Module tends to be a little higher. As an observation, we point out that there are situations, for
example in the graph above, between the 0 and 15 minutes, when the free memory is lower. This is
because, at first replicas are created. After that, the free memory increases with the deletion of
replicas, reaching approximately the level of the one without replication. This means an important
saving of space.

Next, we have analysed the occupied RAM memory in both cases. Figure 14 below shows
the values without replication, while Figure 15 shows the values obtained with our module. At a
closer look, we observer that the values obtained for this test were very much similar, pointing out
that, although our module uses more physical memory, there are not many items stored in RAM. It is
actually a characteristic of our module to keep as much information about the system stored on disk
and to use the results from the monitoring databases, which are also stored on the disk, not in RAM.

34

ADAPTIVE DATA REPLICATION IN BLOBSEER

65

60

55

50

45

40

35

30

25

20

15

10

Memory

0 v v v v
01:44 01:46 01:48 01:50 01:52 01:54 01:56 01:58 02:00 02:02 02:04 02:06 02:08

Service Local Time

» localhost

Figure 14. Occupied Memory — without replication

65

60

55

50

45

40

35

30

25

20

15

10

Memory

il B it e Siabbdhanls

0
00:25

00:30

00'35 00°40 0045 00'50 0055 01:00 01:05
Service Local Time

» localhost

Figure 15. Occupied Memory — with replication

35

ADAPTIVE DATA REPLICATION IN BLOBSEER

6.2 Performance evaluation

7. Conclusions and future work

7.1 Contribution

This thesis proposed our approach to enhance the Replication Module that already exists
within BlobSeer, by adding the decrease replication factor functionality. By adding this capacity to

36

ADAPTIVE DATA REPLICATION IN BLOBSEER

the Replication Module, the system thus became completely capable of dealing with the various
cases of replication possible: increase, decrease or maintenance of the number of replicas for a given
blob version.

This goal was achieved by using monitoring service and MonALISA repository. The
monitored data were afterwards used to help the Replication Manager make an informed decision
concerning the replication factor.

The fully functional Replication Module integrates perfectly with BlobSeer and helps it
become an autonomic system regarding the managing and/or creating or deleting replicas of data
stored on the Data Providers.

7.2 Future work

Although the adaptive data replication module, as it has been described in this paper, has
all the necessary components to work properly and accomplish the purpose for which it has been
designed, some improvements might be made to it.

A possible next step would be to optimise the DecisionMaker, in order to take various
metrics into account when selecting the Data Provider from which we delete data. For instance,
these metrics might include the Data Provider’s position in the network, in order to reduce
overhead, etc. Also, some advanced metrics might improve the precision of the Replication Module
when altering blobs’ replication factor. This would be a very important step, because more precision
means less messages passed in the system and, overall, less overhead.

Another improvement, which comes to continue the whole distributed idea behind
BlobSeer, would entail the distribution of the Replication Manager, thus creating more Replication
Managers and eliminating the problem of single point of failure.

Acknowledgements

This bachelor thesis would not have been possible without the help, support, feedback and
ideas of my supervisor, Dr. Ing. Alexandru Costan. His input has been invaluable, on both academic
and personal level. | would also like to thank Alexandra Carpen — Amarie and Catalin Leordeanu for
their continuous help and collaboration.

References

[1] B. Nicolae, G. Antoniu, L. Bougé, D. Moise, and A. Carpen-Amarie, “BlobSeer: Next-generation data
management for large scale infrastructures,” J. Parallel Distrib. Comput., vol. 71, pp. 169-184, 2011.

[2] Jeffrey O. Kephart, David M. Chess, “The Vision of Autonomic Computing”, published by the IEEE
Computer Society, January, 2003

37

ADAPTIVE DATA REPLICATION IN BLOBSEER

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]
(11]

(12]
(13]
(14]

Lucian Cancescu, Alexandru Costan, Valentin Cristea, “Self-adaptive Data Replication for BlobSeer using
Monitoring Information”

Thanasis Loukopoulos and Ishfag Ahmad, “Static and Adaptive Data Replication Algorithms for Fast
Information Access in Large Distributed Systems”, 2000, http://portal.acm.org/citation.cfm?id=851807
Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung., "The Google file system", ACM SIGOPS Operating
Systems Review, Volume 37, Issue 5, pp. 29-43, December, 2003

The Hadoop Distributed File System. http://hadoop.apache.org/core/docs/current/hdfs_design.html
Bogdan Nicolae, Gabriel Antoniu, Luc Bogue, “Enabling High Data Throughput in Desktop Grids Through
Decentralized Data and Metadata Management: The BlobSeer Approach”, 2009,
http://blobseer.gforge.inria.fr/doku.php?id=main:publications

BlobSeer: Alexandra Carpen-Amarie, Jing Cai, Alexandru Costan, Gabriel Antoniu, Luc Bougé, “Bringing
Introspection Into the BlobSeer Data-Management System Using the MonALISA Distributed Monitoring
Framework”

Viet-Trung Tran, Gabriel Antoniu, Bogdan Nicolae, Luc Bougé. “Towards a Grid File System Based on a
Large-Scalable Blob Management Service”, published in "CoreGRID ERCIM Working Group Workshop on
Grids, P2P and Service computing (2009)"

Badiu Mihaela, Catalin Leordeanu, Valentin Cristea, “BlobSeer False Data Deletion”, 2011

B. Nicolae, G. Antoniu, and L. Bougé, "BlobSeer: How to enable efficient versioning for large object
storage under heavy access concurrency," in Proc. EDBT/ICDT '09 Workshops, Saint-Petersburg, Russia,
2009, pp. 18-25

The MonALISA Project: http://monalisa.caltech.edu/monalisa__Publications _Papers.htm
http://monalisa.caltech.edu/docs/marco thesis.pdf

Mihaela Vlad, “Distributed Monitoring for User Accounting in BlobSeer Distributed Storage System”,
2010

Appendixes

Al Minimum system requirements

In order to be able to properly compile and run our modified version of BlobSeer, you need

to have the following items listed below installed. Some of them are libraries, others are full
applications. As far as we can tell, all of them are required, none of them being optional to the
correct functioning of the system. We mention that the settings below are fully compatible with
Ubuntu 10.9 on which the tests have been carried out:

¢ libpg-dev
38

ADAPTIVE DATA REPLICATION IN BLOBSEER

libpgxx-3.0 a simple apt-get install will do

libpgxx-dev

gmake: sudo In =s /usr/bin/make /usr/bin/gmake

readline: sudo apt-get install libreadline6-dev

zlib: source installation from http://www.zlib.net/zlib-1.2.5.tar.gz

PostgreSQL source installation — version postgresql-9.0.4.tar.gz

Warning: If you have a Debian or Ubuntu environment, you should take into
consideration that the system looks for the started postgresql server by default in
/var/run/postgresql. On the other hand, the operating systems mentioned above
look by default in the /tmp directory. This discrepancy generally results in an inability
of applications to communicate with the database server (even though it is running).
The solution for this type of problem is to correctly set the unix_socket_directory in
the postgresql.conf file, which is found, in our case, in
/home/alex/Monalisa/Service/myFarm/pgsql/data.
unix_socket_directory = '/var/run/postgresql'

ApMon — download from :

http://monalisa.cacr.caltech.edu/download/apmon/ApMon cpp-2.2.6.tar.gz
and follow these steps:
./configure --prefix=SHOME/deploy
make
make install

- Alsoinstall the Java library from here:
http://monalisa.cacr.caltech.edu/download/apmon/ApMon_java-2.2.4.tar.gz
and follow these steps:
set the JAVA_HOME environment variable;
run the installation scripp: ./build_apmon.sh

MonALISA

- Installation from http://monalisa.cern.ch/monalisa Download ml license.html

- Click REGISTER ACCEPTANCE

- Unzip the archive and enter the newly created folder

- Run install.sh — during this step you will be required to choose a name for your
farm and fill in some other information; also you must enable ApMon support —
the port used by ApMon is, by default, 8884)

- Enter the installation folder (by default: ~/Monalisa) and then the subfolder
Service/myFarm

- Edit the ml.properties file, in order to set the IP for the machine (modify the
lia.Monitor.uselPaddress property)

- In order to start the MonALISA Service, enter the CMD folder and execute
"./ML_SER start". When you are done using the service, execute "./ML_SER stop".
If in doubt that the system is working properly, check the log files found in the
Service/myFarm subfolder(e.g.: MLO.log,etc)

- Optionally, you may choose to install the MonALISA interactive client, in order to
have a GUI for the monitored parameters. In order to install it, you simply
download and run the jnlp file found at this location:
http://monalisa.cern.ch/mlclient/Monalisa.jnlp

39

ADAPTIVE DATA REPLICATION IN BLOBSEER

- Download the monitoringDB folder from the INRIA svn:
svn://scm.gforge.inria.fr/svn/blobseer/contrib/monitoringBlobSeer/monitoringD
B, using the svn checkout command.

Make sure to follow the exact instructions found in the README file and compile
the program. Afterwards, modify the files found in the conf directory. In the
AppDb.properties file fill in the exact information about the database in which
your monitored data will be stored (database name, port, etc.).

Warning: Edit the ml.properties file, in order to point to the class files
corresponding to the filters you want to apply. Also add a property as follows to
point to the node file:

BSMonfFilter.nodeFile=file:/home/alex/monitoringDB/conf/nodeFile.txt

A2 Steps required when running the application

1. Start postgres:
alex@ubuntu:~$ Jusr/local/pgsql/bin/postmaster -D
~/Monalisa/Service/myFarm/pgsql/data/
One of the most commonly encountered errors with postgresql is the impossibility to
find a stable recovery point. This generally happens when you restart the postgresql
database server. Do not panic, there is a simple solution to this: use the pg_resetxlog
command as shown below. The —f option means forcing the server to redo its logs and
be able to start again. Do not worry about loss of data, as the required databases are
dynamically generated every time BlobSeer is run.
alex@ubuntu:/usr/local/pgsql/binS ./pg_resetxlog -f
/home/alex/Monalisa/Service/myFarm/pgsql/data

2. Manually create the blobseer_monitor and mydb databases, using the created
command.

3. Start the Monalisa monitoring Service:
alex@ubuntu:~/Monalisa/Service/CMDS ./ML_SER start
Check the log files in order to make sure everything is in order (MLO.log) found in
.../Service/myFarm.

4. Start the monitoring thread:
alex@ubuntu:~/monitoringDBS java -classpath SDM_PROJECT_HOME/lib/log4j-
1.2.15.jar:SDM_PROJECT_HOME/lib/postgresql-8.4-
701.jdbc4.jar:SDM_PROJECT_HOME/lib/MSRC_WEB.jar:SDM_PROJECT_HOME/lib/Far
mMonitor.jar:SDM_PROJECT_HOME/build/:. processing.NodeApp
~/Monalisa/Service/myFarm/ml.properties 5 5000
Remember to set the SDM_PROJECT_HOME first:
export DM_PROJECT_HOME=/home/alex/monitoringDB

5. Start the application itself(mind the order of the processes): vmanager, pmanager,
monitor, rmanager, sdth and provider

6. You can also manually check the databases, to see the information registered in them.
Use the following postgresql commands:

o see database: psql <database_name>

40

ADAPTIVE DATA REPLICATION IN BLOBSEER

o seetablesin a database: \d or \dp
o see columnsin a table: \d table_name
o see all rows: select * from table_name;

A3 Sample configuration file

In our paper, the configuration files used to run the BlobSeer processes are encountered in
the form of .cfg files. Here is a sample file for a simple run, including one instance of each process
BlobSeer is made up of:

Version manager configuration
vmanager: {
The host name of the version manager
host = "localhost";
The name of the service (tcp port number) to listen to
service = "2222";

|5

Provider manager configuration
pmanager: {

host = "localhost";

service ="1111";

|5

Replication manager configuration
rmanager: {
host = "localhost";
service = "3333";
mlirepo = "/home/alex/release-0.4/rmanager/mlirepo.txt";
mlservice = "/home/alex/release-0.4/rmanager/mliservice.txt";

|5

Monitor configuration
monitor: {
host ="127.0.0.1";
service = "4444";

|5

Provider configuration

provider: {
service = "1235";
Maximal number of pages to be cached
cacheslots = 1;

41

ADAPTIVE DATA REPLICATION IN BLOBSEER

Update rate: when reaching this number of updates report to provider manager
urate = 100;

dbname ="/tmp/blobseer/provider/db/provider.db";

#dbname ="";

Total space available to store pages, in MB (1GB here)

space = 128;

How often (in secs) to sync stored pages

sync = 100;

How many times to retry writing from client side before giving up
retry = 1;

Use compression?

compression = true;

|5

Built in DHT service configuration
sdht: {
Maximal number of hash values to be cached
cacheslots = 1000000;
No persistency: just store in RAM
dbname ="";
Total space available to store hash values, in MB (128 MB here)
space = 128;
How often (in secs) to sync stored hash values
sync = 10;
Use compression?
compression = false;

|5

Client side DHT access interface configuration
dht: {
The service name of the DHT service (currently tcp port number the provider listens to)
service = "1234";
List of machines running the built-in dht (sdht)
gateways = (
"localhost"
);
How many replicas to store for each metadata entry
replication =1;
How many seconds to wait for response
timeout = 10;
How big the client's cache for dht entries is
cachesize = 1048576;
|7

Most settings are the ones suggested in the tutorial provided from INRIA:

42

ADAPTIVE DATA REPLICATION IN BLOBSEER

http://blobseer.gforge.inria.fr/doku.php?id=tutorial:deployment. We have, however, also
added proper settings for the other two actors in the system: Monitor and Replication Manager. As a
side note, when configuring the rmanager make sure that the paths for the mirepo and miservice
files are correctly given. Otherwise, you will get an error and will be unable to continue running the
application.

If you decide to run more than one provider, which is usually the case, as the system has
been designed for a large number of providers that enter and leave the system at will, you must
create more configuration files, resembling the one shown above. However, you must make sure
that the ports given for the different providers are not the same. Also, you must include for every
provider, or any other instance for that matter, the configuration settings for all the others. That is to
say, even if only the setting for the provider changes, in the second configuration file you must also
include the settings referring to the Version Manager, for example.

43

