“ POLITEHNICA” UNIVERSITY OF BUCHAREST
FACULTY OF AUTOMATICS AND COMPUTER SCIENCE

Building an interface

to access IAAS for BlobSeer

Supervisors
Prof. Dr. Ing. Valentin Cristea

As. Drd. Eliana Tirga Student

Dorneanu Daniela

BUCHAREST 2010

Building an interface to access IAAS for BlobSeer

Abstract

The Cloud model opens a new perspective in computing. Software and hardware resources are
provided on demand and “as-a-service”; the user only needs an Internet connection to access
the amount of computing power his project requires.

The main objective of this bachelor's project is to integrate BlobSeer distributed storage
application with the Nimbus Cloud, and make it accessible as a storage service on the Cloud.
To achieve this goal we set up a laboratory Nimbus environment, installed BlobSeer entities
on virtual machines deployed into the Cloud and implemented a new feature that allows
BlobSeer to restart from a consistent state, using a model of incremental checkpoints. We
made a series of tests to validate the implemented solution. This report also presents the
architectural model of the Cloud - as implemented by Nimbus and our solutions to many
undocumented Nimbus' new version configuration problems.

Keywords: Virtualization, Nimbus, GridFTP, Service Provider, Storage System, Blob,
Metadata, Security.

Building an interface to access IAAS for BlobSeer

Table of Contents

I PTOJECE ODJECTIVES. . eeieiieiiiieiiii et eette et e ettt e et e et e e e beeeebeeessseeessseeesssaeeeeesesanssssaeeaasensnes 5
2 Introduction and MOtIVALION.ccueeriieriierieeieeste et esee e eeeeaeesaeessaeebeesesaeeeesnaeeeenseeeas 6
3 BaCKEIOUN......coiiiiiiiie et ee et e e ette e et e e et e e s bt eeetae e e e e e nntaraaaeeeeeannnes 8
3.1 Cloud COMPULING OVEIVIEW.....cueeeiieruieeiierieeieesieeeteenteesteeseesaeesseeessnsseeessnnseeessnssees 8
3.1.1 Cloud computing in the context of distributed systems............ccccecvveeeerrrerennee. 8
3.1.2 Understanding cloud SEIVICES.........covueeriieriierieiiienieeieeiee e eieee e eiieee e 11
3.1.3 CloUd STOTAZE. .. eeeuvieiieeieeeiie ettt ettt ettt s et eseae st e et esateeenseeeeennneeeas 12
3.2 NIMDUS ..ttt ettt et ettt e 14
3.2.1 OVEIVIEW .ottt ettt ettt sttt ettt sttt 14
3.2.2 Nimbus ATCHIECIUIE.vieitieieieeiieiie et eiee ettt e ebeesee e e e s asaeeeeneaees 15
3.3 BIODSEET .o 17
3.3.1 BlODSEEr OVEIVIEW......oruiiuiiiiiiieiiesiieieeit ettt 17
3.3.2 BlobSeer's advantages on the Cloudcccceeviierieeiieniie e 21
3.3.3 Developing on BIODSEETcccuiiiiiiiiiiiiiiiiiee e 23
3.4 Virtualization TeChNOIOZIES.ccviriiiiiiieiieie et 24
341 XeN MY PETVISOT....eiiiiiiiiiieeiieeeiee ettt e eieeeeteeeereeeebeeessbeeesseesssseeesseeessseensssnens 24
342 LADVITE .ttt sttt sttt 25
3.5 Checkpoint-Restart APProaChes........cccueeruieriieiiieniieiienie et erieesteereeeeeereeeeeeaeeeens 25
4 OUE CONEITDULION. ...ttt ettt e e 27
4.1 BlobSeer on the Cloud — Setup DesCriptioncceccueeveeriieiienieeiieerieee e 27
4.1.1 NIimbus DeplOYMENt..........cccueriierieriieiieiieeieesie et seeete e ereesaeeeesseaeeeennes 28
A 11T THE CHENE....cueiiiieieieeieieeeeee ettt et 28
4.1.1.2 The WOrKSPace-SEIVICE......cccvreeririeeeriieireeeereeesreeesreeesernreeeeeesessnrsneeeaens 30
4.1.1.3 The REPOSITOTY ...eeeuvieiieeiiieiiesiieeieesiee et esteesteeteessteeaeesseeesseenseesnseeseeeenns 32
4.1.1.4 The VIMMS ..ottt ettt ettt eae e 32
4.1.2 Virtualization Solution — Xen SetUpP........cccvereerieeiienieeiee e 34
4.1.3 BlODSEET SCIUP....cuvieiuiieiieiieeie ettt ettt ettt e e e ee e e ensaeeeenenees 35

Building an interface to access IAAS for BlobSeer

4.2 BlobSeer checkpoint-restart inside Nimbus Cloudccccevvieeiieniinnienieiieeeee 36

4.2.1 Existing approach on checkpoint restart in BlobSeer...........ccoocveeiniiiiinnnnneen. 36

4.2.2 Our approach on checkpoint restart in BlobSeer............ccoceeevniiiiinnieeennnnee.. 37

4.2.3 Solution iMplementation...........cccueeueereerieesiienieeiiereeeiee e eeeeseeeeaeeeereeeeanes 38
4.3 Command Line interface for controlling BlobSeer in the Cloud............cccceecueeennenne 39
B TESTS. ettt ettt et ettt ettt et e e eeeeaas 41

4.4.1 First Scenario: Deploying the first machine on the Cloud...............cccuvevenneen. 41

4.4.2 Second Scenario: Starting more components of BlobSeer on the Cloud......... 43

4.4.3 Third Scenario: Test Checkpointing for Provider/Metadata Provider 43

4.4.4 Fourth Scenario: Test Checkpointing for Version Managercceuu...... 44

4.4.5 Fifth Scenario: Test Checkpointing for Provider Managercccuu...... 45
5 RESOUICES. ...ttt ettt et ettt e bt st e bt e e e st e e e e abteeeeeaneeeees 47
T B S 3 A2 (U PPPRP 47
5.2 SOTEWATC......eentieieeitee ettt ettt ettt 47
6 Conclusions and future developmENts.c.cevieriieiieriieiiecee e 48
T RELEIEIICES ...ttt et ettt 49
8 Annexe 1 — Installing and Deploying BIODS@er.........ccoeviriiiiiiiiiiiieieeieceeeee e 51
9 Annexe 2 — Incremental checkpoints on BlobSeer...........c.cccvvveviiiiciiinciiiieeeeieeeeee 59
9.1 Checkpoints for Provider and Metadata Provider...........ccccceeeeiiieciieeciieeieeeieeeene 59
9.2 Checkpoints for Version Manager...........cccueerierieerieereeeniieneesieenseessiseeeesnsseeeesssseeens 61
10 Annexe 3 — Scripts for Command Line Interface for BlobSeer.............cccccovveeiininnien. 64
10.1 Interface for deploying the Nimbus Cloudcccceevieriiiiiiiiiiniieiiee e, 64
10.2 Interface for deploying BlobSeer as a service on the [aaS Nimbus Cloud 66

Building an interface to access IAAS for BlobSeer

1 Project objectives

The goal of this bachelor's project is integrating the BlobSeer distributed storage

system into the Nimbus Cloud environment. To achieve this, we have implemented the
following objectives:

Set up a laboratory Cloud environment using the Nimbus, as described on chapters
4.1.1 Nimbus Deployment and 4.1.2 Virtualization Solution — Xen Setup

Deploy BlobSeer entities on various virtual machines in the Cloud, as described in
chapter 4.1.3 BlobSeer Setup

Add checkpoint-restart functionality to BlobSeer, in order to enable scheduled

restarts, as described in chapter 4.2 BlobSeer checkpoint-restart inside Nimbus
Cloud.

Provide an interface for access and control BlobSeer in the Cloud system as

described in chapter 4.3 Command Line Interface for controlling BlobSeer in the
Cloud.

Perform various tests to validate the implemented solution, as described in chapter
4.4 Tests

Building an interface to access IAAS for BlobSeer

2 Introduction and motivation

The way the Internet has evolved in being very easy to access has opened new perspectives
regarding how this facility can be used in computing. Computational power has become
available through models like Clusters, Grids and nowadays a new model has more and more
impact on the way we do computation — the Cloud infrastructure. The cloud-computing
concept defines an abstraction over a network of computers, hiding the physical
infrastructure from the user and providing (often virtualized) resources as services. Each
service consumer has access to the cloud from its own desktop, notebook, PDA by simply
using an Internet connection.

This report presents a complete setup of a Cloud using Nimbus [23] and an integration of the
BlobSeer[25] distributed file system into this Cloud, using Xen [24] as a virtualization
environment. We implemented mechanisms for starting/stopping/restarting BlobSeer inside
the Nimbus Cloud , while preserving the data it stored during previous runs and bringing
BlobSeer to a consistent state before stopping it. We also provide a command-line interface
for these actions. This report also presents the architectural model of the Cloud - as
implemented by Nimbus and our solutions to many undocumented Nimbus' new version
configuration problems. We will also state the advantages of using BlobSeer as a storage
system in a [aaS Cloud [1].

The type of Cloud we have experimented in this project is Infrastructure-as-a-service (IaaS).
This model represents a fundamental change of perspective: “when a remote user “leases” a
resource, the control of that resource is turned over to that user”.[9] Renting configurable
resources was enabled by the availability of free and efficient virtualization technologies like
the Xen hypervisor. We used an open-source implementation of [aaS Cloud, Nimbus , which
is in a rapidly-growing development process and even reached a stage when it can be used
in an Enterprise Environment, as a good alternative for well-known commercial solutions
(e.g. Amazon EC2 [13]).

Making the IaaS model available for wide usage raises many new challenges like security
measures, failure resistance, huge amounts of data and interoperability. When working with
huge amount of data and also with huge files, which is a common situation in a Cloud
system, manageability can become an issue. Any problem that occurs can lead to very big
losses of data.

BlobSeer is a data storage application specially designed for distributed systems that was
built as an alternative solution for the existing storage layers currently developed by Amazon
[14], Google[6] or the open-source storage system Hbase[26], used by Hadoop[27]. By
keeping the assets of the previously mentioned storage services: decentralization, interface
for data-location-awareness, fine-grained data access, and by adding new design principles
like versioning, BlobSeer has a considerably improved speed when comparing with other
similar systems.

A very important subject addressed in this report is preparing BlobSeer for the Cloud
environment. Because BlobSeer is still in the state of research this system has some
shortcomings. One of them, that needs to be resolved before including BlobSeer in the Cloud
system is not having the base to start from a consistent state; it always starts from zero data.

Building an interface to access IAAS for BlobSeer

Adding support to start BlobSeer from a consistent state previously saved is a significant
step. This aspect is very important in the Cloud context as the user needs to be able to
shutdown the application on the Cloud when it is not used and restart it from the last
consistent state. This is also an important feature for the failure tolerance of the system.

A key feature of BlobSeer is being able to do most of its operations in parallel using locking
as little as possible. This is achieved by the versioning system which assures the consistency
of the written data. The single operation which is carried out in a serial fashion is updating
the version of the data recently written. We studied various ways of saving the state of the
system without affecting the almost lock-free implementation of BlobSeer and still having
proper snapshots of the application. The conclusion was developing support for taking
uncoordinated snapshots — this meaning that each process will store each consistent state.
Main reasons for choosing this solution are overall good performance and the autonomy of
each entity to save its state in the most convenient moment. This choice also maintains the
good performance BlobSeer has without our module and also made it an application well
integrated with the Cloud. In this report we will describe in detail this approach of
implementing checkpoints for BlobSeer and we will also develop proper tests to validate the
chosen implementation.

This report starts with a presentation of the related work in the field of our project. The
3Background chapter starts with the Cloud computing technologies in general, describing in
particular the cloud storage implementations for the cloud, and continues with presenting the
specific applications used in this project the implementation of the IaaS Cloud Nimbus and
the storage layer BlobSeer. The background chapter also describes the various checkpoint-
restart approaches that can be used for a distributed storage application. The part 4 Our
Contribution contains the implementation of this project consisting in a detailed setup
description, our method to add storage consistency for BlobSeer, the interface that provides
access to BlobSeer in the Cloud and the tests to verify our implementation. The chapter 5
Resources specifies the hardware and software base we used for this project. In the sixth
chapter, 6 Conclusions and future developments we emphasize our final opinion and possible
directions of development for this project.

Building an interface to access IAAS for BlobSeer

3 Background

3.1 Cloud computing overview

3.1.1 Cloud computing in the context of distributed systems

Cloud computing is a new paradigm shift in computing which implies that shared resources
and applications are provided to Desktops or other end-user devices on-demand through the
Internet. With Cloud system computation becomes an abstraction built upon clusters of
servers, an abstraction transparent to the client. Cloud computing implies delivering services
through the Internet in a dynamically scalable way and typically using virtualization. [7]

There are two key elements that advantage clouds in respect to other computing models from
the point of view of resource usage. The first limitation starting from supercomputers and
single servers was the static and finite amount of resources that could be shared — With this
type of technologies new resources would usually be acquired when the current ones won't
cover the needs any more. But adding new resources to the network requires a lot of work to
be done by the network administrators and thus time to get the best solution on short and
long term. This operation however can prove to be redundant on long term — in most of the
cases more resources are required only for short periods of time before a project's deadline,
during load testing. [2] Being able to approximate what resources might be necessary in the
future it's very difficult and the usual politic for this is to get new resources when the systems
crashes — which usually leads to loss of data and frustration for developers. Besides some
busy periods the resources are idle so the investment wasn't very efficient. This is one of the
reasons why getting resources on the network only on demand can be a very good idea to
efficiently use resources only when they are needed. [1]

Grid computing is a model which allows including new remote resources in the network.
This system is based on Virtual Organizations in which volunteers get to participate in a
certain project by putting together computational power — their own clusters. [5] The main
advantage of grid computing is being able to easily add new nodes into the Grid and use
them only when they are needed. This technology allows the scientific and industrial
environment to collaborate into developing big projects which requires a high computing
power. Each node will receive tasks from the job manager, will compute data independently
and then will send the results back to a special node. New nodes can be added easily in the
network by connecting them to the Grid. A weak point of Grid computing when compared to
supercomputers and dedicated clusters — is on the reliability side, as it could be a usual thing
that a remote computer from the Grid loses connectivity, in which case the task could be lost
and thus redistributed to a different node. This lost task can lead to losing other data that
depend on this node's results. The nodes in the Grid should respect a certain protocol and the
Grid users need to have a valid certificate and to respect certain specification used in the
Grid. However the infrastructure of grid computing has some limitation based on the
fundamental assumption of Grid computing: control over the mode in which remote
resources are provided belongs to the remote site. Grid users usually don't have
administration rights on the remote resources for security reasons — and this will limit the
ability to deploy software that need root access to the resources. Also occasionally the users
have to adapt their application in order to run using the software offered by the Grid. Besides

Building an interface to access IAAS for BlobSeer

that Grid doesn't offer a way for the users to receive on demand computational power. In
general, a user can use the Grid if is a member of a virtual organization that was approved in
the Grid. [2]

==

Grid Computing is all about sharing, aggregating
hosting, offering service across the world for the
benefits of man kind.

"grid in need is a grid indeed"

adarsh

Fig 1 — The devices that can be part of the Grid

The cloud-computing concept defines an abstraction over a network of computers which
allows the cloud user to see the entire network as a single PC. Each service consumer — user
— has access to the cloud from its own desktop, laptop, PDA using an Internet connection.
The hardware and the operating systems that operate on this hardware is invisible to the
client. Each request passes through the system management which finds the correct resource
and then calls the system's services necessary to fulfill the request. These services access the
needed resources from the cloud and launch the appropriate web applications or
creates/opens a certain document, or gives remote access to a virtual-machine setup by the
user. Afterwards the system's monitoring and metering functions track the usage of the cloud.

[1]

The paradigm of cloud computing made it possible the access existing resources at remote
sites when these are needed. The cloud is able to deliver more resources and on demand offer
them on demand to the user. The client has complete access to it's resources in the cloud and
he can make his own setup. [2]

The Cloud computing concept is based a lot on virtualization. Therefore in the cloud the
client has the opportunity to control the software stack from the operating system to the
application level. This specialized type of cloud is known as laaS (Infrastructure-as-a-
Service) — as it offers an entire infrastructure to the users. IaaS is currently provided by
Amazon, GoGrid and Nimbus. There are other types of cloud such as Platform-as-a-Service

Building an interface to access IAAS for BlobSeer

(what Google and Microsoft are offering) or Software-as-a-service (community specific
applications and portals).

The key points that make cloud-computing a very good and attractive solution for
dynamically control the amount of used resources are the user's ability to have complete
administration rights over its resources, the customizable environment and the possibility to
use those resources on-demand. The Client sees only his resources while the cloud
infrastructure is transparent for him. The users only needs to care about their own list nodes
into the cloud. [1]

One of most obvious difference between Cloud computing and Grid computing is the fact
that Cloud offers more control to each individual user of the cloud, no matter the size of his
job while Grid computing is specialized to support large set of users organized in virtual
organizations. In order to best benefit from the data-intensive storage within the Grid
computing technology the amount of distributed data must be large, while storing data into
the Cloud has to be economically profitable even for small amounts of data. [3] In other
words the Cloud seen as laaS represents a fundamental change of perspective: “when a
remote user “leases” a resource, the control of that resource is turned over to that user”. This
change in assumption was enabled by the availability of a free and efficient virtualization
technology: the Xen hypervisor. Before virtualization, turning over the control to the user
was fraught with danger: the user could easily subvert a site. But virtualization provides a
way of isolating the leased resource from a site in a secure way that mitigates this danger.
Virtual machines can be deployed very fast (on the order of milliseconds) when, in addition
to that, the overhead and the price associated with a reliable virtualization technology went
down, it suddenly became viable and cost-effective to use them in order to lease resources to
remote users. [7]

This new technology is supposed to change the way the computers are seen today — the way
we run applications and store information. The individual computer is changed with the
nebulous collection of all types of computers which are accessed through the Internet. One
big plus from the business point of view is the fact that companies can use the Cloud to
scale up massive capacities without worrying any more about the cost of the infrastructure
removing from their businesses other additional expenses like the entire hardware
infrastructure, the room for keeping these servers, hiring and training new personnel for
maintaining the environment, licenses of new software or even additional costs for growing
the infrastructure — which will be used rarely. With cloud computing it is certain that one will
pay only for the used resources.[1] When using the Cloud the service consumer becomes
independent of the PC or of the specific version of it's device. The user is not responsible for
the infrastructure he uses and he is not aware of where that infrastructure is located as the
entire Cloud is hidden under a single domain, which exposes all its services.

Being able to elastically enlarge and diminish the effectively used resource enhances new
challenges we have previously reviewed. This is why nowadays there are a lot of big
companies like Google and Amazon that already offer Cloud Computing services and are
investing a lot in developing this technologies and offer much more reliability, trust and
lower cost for “renting a byte” in the Cloud. On the market there are also some very good
open source alternatives for Cloud toolkits like the Nimbus Toolkit. We use Nimbus to setup
the cloud environment for this project.

10

Building an interface to access IAAS for BlobSeer

3.1.2 Understanding cloud services

Before start working with a cloud framework it's important to understand the main
advantages of cloud-computing in the distributed systems environment and how the
components interact into the cloud.

i =

v

e e
i] S =t
AN e Cloud e

—rH Servers
= = ;'Il:'{'- [8 "

- ‘w
| B
e b—- L

5 ——

Fig 2 How users connect to the cloud

As represented in the Fig 2 [2] each service consumer has access to the cloud from its own
desktop, laptop, PDA using an Internet connection. For these users the cloud is seen as a
singular entity (application, device, document, OS of a virtual machine). The hardware and
the operating systems that operate on this hardware is invisible to the client. Each request
passes through the system management which finds the correct resource and then calls the
system's services necessary to fulfill the request. These services access the needed resources
from the cloud and launch the appropriate web applications or creates/open a certain
document, or gives remote access to a virtual-machine setup by the user. The monitoring and
metering functions track the usage of the cloud.

All the web based applications or resources offered via cloud computing are considered
Cloud services. For examples the Google/Docs application, Google Calendar, Microsoft Live
are hosted on the cloud — and the user is able to access these services usually through the
browser. After launching the application it behaves as an usual Desktop application.

The advantages of cloud services are numerous: if the system crashes, this doesn't affect the
document at all, the document can be accessed from different locations and also it can be
accessed and modified from more than one user simultaneously.

Types of Cloud Services

— Software-as-a-Service (SaaS)

11

Building an interface to access IAAS for BlobSeer

This type of service offered in the Cloud is the most common of the services that the Cloud
can provide. This service provides an application on it's own central server that can be
accessed by thousands of users without them installing any new application through Internet,
Intranet, LAN, or VPN. Key words regarding this type of cloud are: Internet connection,
centralized control, one-to-many model. Examples of this type of application: Google Docs,
Google Apps, Microsoft Live.

— Platform-as-a-Service (PaaS)

This service provides a computing platform or a computing stack as a service, this meaning
consuming cloud infrastructure and sustaining cloud applications. This type of cloud
computing service eliminates the need for a lot of companies to buy their own hardware for
development and testing and even for deploying their applications. Besides offering
computational power and storage PaaS also offers an operating system which is patched and
kept up to date by the cloud service provider. Some examples of this type of application are:
Microsoft's Windows Azure Platform (an operating system which serves as a runtime
environment for a set of services and also provides a platform for development), Google App
Engine (an application for developing and hosting web applications in Google-managed data
centers). PaaS is the best approach if customization is not an important asset as the remote
resources are already set up with a default set of applications. [12]

— Infrastructure-as-a-Service (IaaS)

IaaS Clouds deliver on-demand computing power and storage. With IaaS users can deploy an
image that includes applications and update the components of that image after the user's
needs. An example of a laaS implementation is Amazon Web Services (Amazon EC2 and
Amazon S3). With TaaS the enterprise can make their own virtual machines or can ask the
Cloud administrator to prepare the machine with certain requirements. Customers select and
basic software servers for their part of the cloud and then load up their libraries, applications
and data then configure them themselves. Virtualization enables [aaS providers to offer
almost unlimited instances of servers to customers and make cost-effective use of the hosting
hardware. BlobSeer was built as an application for distributed environments as its main
focus is offering features to work very fast with processed data that is written in parallel on
different nodes of the cluster. Therefore there are a lot of advantages offered by BlobSeer
once it is integrated on the Cloud. [7]

3.1.3 Cloud storage

One of the most important features of the Cloud is being able to store huge amount of
data. Keeping data into the cloud is more gainful then saving it on dedicated servers and
it's also more secure as we are protected from accidentally deleting the data as it is saved
on multiple machines. When saving files on the cloud the user sees a virtual server which
contains it's data as being saved as on a static machine having a certain name. However
behind this interface the file is usually divided between many third-party servers (not
dedicated ones) — and the data location changes continuously into the cloud. All these
features involve having a special storage layer that implements these special requirement.
The main initiatives regarding solutions for providing storage on Cloud system are

12

Building an interface to access IAAS for BlobSeer

GoogleFS, Amazon S3 and the storage layer for Hadoop. Next we will shortly present
the main characteristics of these applications.

The main features offered by the GoogleFS are the following: [4],[6]

— Splitting the huge files into 64 MB fixed blocks — distributed among chunk servers.
These chunks are extremely rare overwritten. These chunks are usually read or
appended to these big chunks of data. The nodes of the cluster are divided into two
types one Master node and a lot of Chunkservers.

— The metadata that describes the directory structure of the file system and the
metadata that describe the chunk layout are stored on the centralized Master server.
The Master server receives updates periodically from each chunk server ("Heart-
beat messages").

— The system that provides the permission to modify a chunk of data works through
“expiring leases” of time. During this time granted by the Master no other process
will be granted permission to modify that chunk of data. The modified chunkserver,
which is always the primary chunk holder, then propagates the changes to the
chunkservers with the backup copies. The changes are not saved until all
chunkservers acknowledge, thus guaranteeing the completion and atomicity of the
operation.

— Programs access the chunks by first querying the Master server for the locations of
the desired chunks; if the chunks are not being operated on (if there are no
outstanding leases), the Master replies with the locations, and the program then
contacts and receives the data from the chunkserver directly.

In HDFS, the read operation essentially works the same way as with GoogleFS. However
this is different in semantics: it allows only one writer at a time and once written the data
cannot be altered by appending or overwriting. HDFS also has some features that data
throughput similar to the one implemented by GoogleFS.

With Cloud-computing development the need for a system that offers effective data-intensive
application increased. Thus Amazon started to offer Map-Reduce infrastructure as a service —
Elastic Map-Reduce. Amazon Elastic Compute Cloud (Amazon EC2) is a web service that
provides resizable compute capacity in the cloud. It is designed to make web-scale
computing easier for developers. [14] Hadoop provides support for using as a filesystem the
Amazon S3 (Amazon Simple Storage Service) instead of HDFS through S3 Native
FileSystem (URI scheme: s3n) or the S3 Block FileSystem (URI scheme: s3). The main
design principles of the S3 file-system are the following [13]:

— S3 System was built with the idea of simplicity in mind and the objects can reach
sized up to GB. It implements simple and well established standards as SOAP. Each
object is stored in a bucket and retrieved via a unique, developer-assigned key. The
user is able to delete, read and write to this objects — identifying them by this unique
Id.

— Data-location-awareness of the data is another characteristics of S3 file system.

13

Building an interface to access IAAS for BlobSeer

Objects can be created to belong to one or more regions. Once stored in a Region the
block can never leave the Region unless the user transfers it out. For example,
objects stored in the EU (Ireland) Region never leave the EU.

— The “decentralization” principles has the target to remove scaling bottlenecks and
single points of failure.

- By “tolerance to failure” the system continues with minimal interruption even if
some components failed.

— The S3 file-system has a “controlled parallelism”, which implies implementing the
necessary granularity to improve performance

— The “symmetry” characteristic means that all nodes are identical as functionality and
don't require node specific configuration and “simplicity”.

These principles make the S3 system to be very efficient and easy to grow.
Other initiatives are:

— GluserFS — a general purpose distributed file systems — which works with storage
bricks over the network. [15]

— General Parallel File System (GPFS) is a high-performance shared-disk clustered
file system developed by IBM. It is used by many of the supercomputers that
populate the Top 500 List of the most powerful supercomputers on the planet.
[16]

— The Parallel Virtual File System (PVFS) is an Open Source parallel file system.
A parallel file system is a type of distributed file system that distributes file data
across multiple servers and provides concurrent access by multiple tasks of a
parallel application. PVFS was designed for use in large scale cluster computing.
PVFS focuses on high performance access to large data sets. It consists of a
server process and a client library, both of which are written entirely of user-level
code. A Linux kernel module and PVFS - client process allows the file system to
be mounted and used with standard utilities. The client library provides for high
performance access via the message passing interface (MPI). [17]

In this project we have chosen to integrate BlobSeer, an open-source alternative to the
systems we have presented in this chapter — GoogleFS, Amazon S3, GPFS, PVFS — into the
[aaS Cloud system Nimbus.

3.2 Nimbus
3.2.1 Overview

Nimbus is an open-source framework that can be used to enhance a cluster to be used as
IaaS. The goal of the project is to develop a Cloud system mainly for research purposes but

14

Building an interface to access IAAS for BlobSeer

can be used not only for research. Through this system the client is able to leverage existing
resources at remotes sites by deploying virtual machines on the remote servers and configure
them according to the users' needs. The difficulty of deploying Nimbus can vary from very
simple to complex depending of the Cloud's size or of scope. However for a cloud with a lot
of nodes Nimbus offers a service named “context broker”” which allows clients to install and
coordinate large virtual clusters automatically in parallel. In the current project we have used
a light setup of a cloud service with the minimum number of elements. The principal
elements of the Nimbus system are: the Virtual Machine Manager, the Repository, the
Workspace-service, the Client.

3.2.2 Nimbus Architecture

We will shortly describe here each part of the Cloud and what we have installed on each
element — All these constituent parts are able to communicate with each other as represented
in the Fig 3 [12]. Security between the components of the cloud is addressed using X.509
cryptography standard and the certificates are generated as described in [18].

A standard configuration model that we have worked with is represented in Fig 2.3 [12] and
contains the following components [23]:

— The Workspace-Service

The Workspace service is the component that publishes information about each Workspace-
Constrol. The Workspace service is a standalone site which can be invoked by various
remote protocols. Here we have installed the nimbus service, version 2.4 from official
nimbus project download page. The Workspace Service site manager is the instance to where
the client is sending the commands to be executed on the cloud. In this setup the Workspace
Service will copy the virtual machines from the Repository to the VMMs and deploy them.
The deployed virtual-machines contain BlobSeer installed on them.

— The Repository

On this machine are stored the Xen Virtual-machines which will be deployed into the cloud.
Here we installed globus-gridftp-server following the tutorial from the Globus website [18].
We used Gridftp — as it is an extension of the standard FTP which solves the problem of
incompatibility between the storage and the access systems. GridFTP provides a uniform
way of accessing the data, encompassing functions from all the different modes of access,
building on and extending the universally accepted FTP standard. FTP was chosen as a basis
for it because of its widespread use, and because it has a well defined architecture for
extensions to the protocol (which may be dynamically discovered).

— Virtual Machine Manager

The VMM node is the node with which manages all the virtual machines. The privileged
account on the service node needs to be able to SSH freely to the VMM (without needing a
password). And vice versa, the privileged account on the VMM nodes needs to be able to
freely SSH back to the Workspace Service nodes to deliver notifications. On this node we
have installed the Workspace-Control and the Xen Hypervisor.

15

Building an interface to access IAAS for BlobSeer

v The Workspace-Control is implemented in Python in order to be portable and
easy to install. Requires libvirt, sudo, ebtables, and a DHCP server library. This
component of Nimbus is installed on each VMM node in order to offer the next
functionalities

* start/ stop/pause the VMs;

* reconstruct/modify/manage the VM images;

* securely connect the VMs to the network (uses DHCP to assign Ips);
* deliver contextualization information (using the context broker).

v" Xen Hypervisor which allows several guest operating systems to execute on the
same computer hardware concurrently. We used Xen technology to the detriment
of KVM which also works good with Nimbus because Xen provides better
interoperability, support for batch systems and works very well on hardware that
doesn't have special support for virtualization. [24] To communicate with the
Xen service the 2.4 version of Nimbus is using libvirt to manage the deployed
virtual machines.

— The Client

The client has the goal to help the Cloud users to start using the [aaS system very easy from
any sort of device — laptop, PDA and for that it offers an interface for communication with
the Workspace-Service and the Repository. This component sends requests to the VMMs and
the Workspace Service nodes. [23]

On this node we have installed the nimbus autocontainer. This tool has the goal to offer an
easy support for the administration of the machines on the Cloud because: Generates full
configuration strings from shortcuts, can transfer files to/from the repository node using its
embedded GridFTP client, packages almost all needed dependencies and other useful utility
programs.

The requests sent to the Repository are list (which will list all the available virtual-machines
from the Repository), transfer (this will transfer the virtual machines). The requests sent to
the Workspace-Service are run (which will send a virtual-machine from the Repository to a
VMM and start it), terminate (shut-downs the virtual-machine). The run command offers
very important information for the administrator of the system: like the IP of the new
deployed machine. This information is used when launching BlobSeer instances into the
Cloud after the Virtual Machines are already started. Requesting certain fixed IP into the
cloud costs much more than having allocated random IPs.

16

Building an interface to access IAAS for BlobSeer

Workspace Cloud Configuration = — &=
f——" —
— —
] e N
— [—1F__ &
. SERVICE INITIATED _ — ,H,
= ————— LW
. VMM INITIATED
vmms A A
. CLIENT INITIATED
NOTIFICATIONS ~ PULLFILES | | PUSHFILES
CONTROL FROM VMMs TO RUN | AFTERWARDS
COMMANDS]
TO VMM i
v o ¥ —
T — e
== 2 il
Workspace Service Repository
i sTATUS
i UPDATES
]
reauests | ¥ | REQUESTS
TO SERVICE | i TOGRIDFTP

teeerene- () cloud-client -

(--run, --terminate, etc.) (~list, transfer, etc.)

Fig 3 Overview of the cloud configuration

3.3 BlobSeer

3.3.1 BlobSeer Overview

The BlobSeer data storage layer is a software that was built as a more efficient alternative
than the HDFS the default storage layer for Hadoop, by eliminating some of it's
disadvantages. When working with huge amount of data and also with huge files the
problem that arises it's the manageability problem — any problem that occurs can lead to very
big losses of data. The storage layer proposed by BlobSeer supports versioning — a feature
which allows rolling back undesired changes, but also dividing a dataset into independent
datasets that can evolve by themselves. Another plus that BlobSeer adds it's an interface that
permits the application to be data-location-aware — therefore the scheduler is able to place
computational work close to the data, reducing the network traffic. Providing a high
throughput in spite of heavy concurrent access is another feature that the storage layer
provides by eliminating the locks as much as possible and making all the activity to take
place in parallel. This design of this application was inspired from the previous similar
storage layers like HDFS, GoogleFS, S3 from Amazon — and it is faster then these
applications because it eliminates some of those weak points.

BlobSeer is an application specially designed to deal with the requirements of large-scale
data-intensive distributed applications. Data is abstracted as large sequence of bytes and
stored as a blob (binary large object), which is essentially a huge file. [25] BlobSeer took act
of all these previously developed systems' lacks and pluses which were used as a start point
to design the BlobSeer as a concurrency-optimized file system for Hadoop. The BSFS layer
enables Hadoop to use BlobSeer as a storage backend through a file system interface. [4]

17

Building an interface to access IAAS for BlobSeer

BlobSeer design advantages:

— the system which is based on versioning the objects offers a lock free access to data
and also favors scalability under heavy concurrency.

— High throughput it's assured by the decentralized data and metadata management.

— The scheduler is able to place computational work close to the data, reducing the
network traffic.

In BlobSeer the data is structured into flat sequences of bytes — also called BLOBs (Binary
Large Objects). The size of the blob can be very small (64mb) for fine-grained access to
huge BLOBs of hundred of GB.

f Metadata Providers | Client b
Metadata
1l
Varslon
manager

Providers

Fig 5 BlobSeer's Architecture

BlobSeer represents a set of distributed communication processes — the distribution and
interaction between them are shown in the Fig 5 [25] From the Blobseer design we can
extract the following entities [11]:

1) Client

This role is the one the can create/write/read from BLOBs. All these operations are done
concurrently even there are done with the same BLOB.

2) Data provider

The data provider or simply the provider is the item that stores the data generated by the
writers. The new data providers can dynamically join or leave the system. In the context of
Hadoop Map-Reduce, the nodes hosting data can also act as computing elements as well.
This helps the node to benefit from the Hadoop strategy to make data aware of it's location,

18

Building an interface to access IAAS for BlobSeer

thus placing the computation as close as possible to the data.
3) Provider Manager

The provider manager maintains information about available storage space and schedules the
placement of newly generated blobs. This entity selects using a load-balancing algorithm the
providers to which it can evenly assign the data.

4) Metadata Provider

This items item physically stores the metadata that allows identifying the blocks that form a
snapshot version. The access to the metadata providers can be done concurrently. The nodes
that host this type of items can also host computational power.

5) The version manager

This item assigns incremental snapshot versions numbers so that the serialization and
atomicity of the write operation is assured. It is recommended to host this node on a separate
server.

Currently the 2 most important operations read/write are the ones implemented on BlobSeer
which will be shortly described as follows:

1) Reading [11]

When reading the client has to do the following operations which can be easily read from Fig
6:

— find out the BLOB that corresponds to the requested file;

— then the client must specify the version manager from where to read, and also the
range (size + offset) that needs to be read. This data need to be provided considering
the Hadoop doesn't support versioning yet the reading call is done in the current
implementation.

— Afterwards the client asks the version manager about the requested version of the
BLOB. The version manager forwards this request to the metadata providers, which
in turn send on back to the client the metadata that correspond with request of the
client — the range (size, offset) from where the client will read the data. One the
location of the data was identified the client fetch the blocks from the data providers.

— All the requests are sent independently one another and can be processed in parallel
by the data providers.

19

Building an interface to access IAAS for BlobSeer

1. Associate the

2. Request BLOB version

Client

i
Manager
3. Forwards
Metadata
Provider

4. Send the
metadata corresponding
to requested range

client's request

Fig 6 BlobSeer reading scheme
2) Writing [11]

When writing the client has to do the following operations which can be easily read from Fig
7:

— When writing the first operation the client does is splitting the data to a list of block
in order to correspond to the requested range.

— Then the client sends a request to the Provider Manager and asks it for a list of

available Providers, where the writer would then write it's data: one provider/per
block.

— The Provider Manager chooses the Providers following a load-balancing algorithm
and sends the list back to the client.

— The client then will write the data in parallel on these Providers. If one writing fails
then all writes will be considered as failed.

— If all the write operations are successfully accomplished the client contacts the VM
to announce it of it's intent to update the BLOB's version. As described earlier this
first phase it's done in parallel independent of other writers.

— Afterwards the VM assigns the each write request a new snapshot version manager
id. If the VM Manager detects that lower versions of the data the client wants to
update currently is still in the writing process then it gives the client a message
concerning this. When all the lower versions of the current BLOB to be written by
the client are ready the VM sends the id to the client.

— The client will receive this id and will generate new metadata that will send it
together with the existing metadata to a Metadata Provider — that will store this
metadata. This operations creates the illusion of a new stand alone snapshot.

20

Building an interface to access IAAS for BlobSeer

— When the Metadata Provider successfully has written the data will notify the client
about this.

When the client receives the success notification from the Metadata Provider the
Version Manager will be notified of the existence of the new version of the BLOB.

Metadata
Provider

8. Send new metadata
along with the old one

2. Req list of available P ;
" Provider
Man r
Send a list constructed anage

load-balancing algorithm

nenting
r.

4. Write in parallel

each block to a
: provider, if one write
ails whole operation

. fails

6. Assigns to each writer's req
new snapshot version
id according to their order

7. Send version

id tq client!
Version
Manager

Fig 7 BlobSeer writing scheme

3.3.2 BlobSeer's advantages on the Cloud

BlobSeer is an application that serves as a storage layer when working with very big sets of
data on distributed systems. Its strong points, which make BlobSeer a potential alternative
for other similar storage layer for Cloud — GoogleFS, Amazon S3 — are the versioning
system, achieving high throughput and the data-location-aware feature. We will present each

of these advantages next. [4]
1) Versioning

A client from BlobSeer is able to create new blobs, write/append data to them, read data
from them by using a simple interface. Each blob is identified by a unique ID in the system
returned when the BLOB is created. The client also is responsible to version the BLOB
because each time a subsequence of bytes it written to the BLOB a new snapshot reflecting

21

Building an interface to access IAAS for BlobSeer

the changes is generated instead of overwriting any existing data. The counter of the
snapshot is auto-incremented -and all the past versions of the BLOB can be accessed — if
they weren't removed to free space. When reading — by default the user is able to read from
the most recent snapshot of the BLOB but also it is able to read from other versions of the
blob through a special call. Every time a new version of the BLOB is created only the part
that is different from the previous snapshot is actually saved. Also the new version of the
BLOB shares all the unmodified data and most of the metadata with the previous BLOB.
This design facilitates implementation of rollback and branching as the data and metadata
corresponding to previous versions will remain this way easy to be accessed in the system.

[4](11]

The BlobSeer as a storage layer for Hadoop aims to offer a high throughput under heavy
access concurrency when reading, writing and appending data to the BLOB. The accomplish
this goal the design uses data-striping, distributed-metadata, a design based on versioning,
lock-free data access.

2) Data-striping

This technique implies that each BLOB containing blocks of fixed sizes can be distributed
among the storage nodes. This strategy aims to distribute homogeneously the BLOB's blocks
so that when the readers want to access concurrently different parts of a file the throughput
to be maintained as high as possible.[4]

3) Distributed metadata

A BLOB is accessed by specifying a version number and a range of bytes delimited by an
offset and a size. The metadata is organized as a distributed segment tree — which is
associated with to each version of a given BLOB id. The node covers the range (offset, size).
For each node that is not a leaf the left child covers the first half of the range and the second
half the right child. To make more efficient the concurrent access to the metadata - the nodes
of the tree are distributed to the metadata-providers using DHT (Distributed Hash Table).
The expansion of the tree when creating a BLOB, overwriting or appending blocks from th e
BLOB can be seen in the Fig 4 [4] Medata Representation. Each tree node it's identified in
the DHT by the version number and by it's range (offset, size). The entire subtree are shared
among the trees associated to the snapshot manager. The decentralized design of the
metadata has a very important impact to maintaining a high-performance on concurrently
accessing the BLOBs.

(a) The metadata after appending (h) The metadata after overwriting the first (¢) The metadata after an append of one block to the
the first four blocks to an empty two block of the BLOB BLOB
BLOB

Fig 4 BlobSeer metadata representation

22

Building an interface to access IAAS for BlobSeer

4) Versioning based concurrency control

The versioning based concurrency control algorithm relies on avoiding synchronizations
both on data and metadata as no existing data or metadata is ever modified.

Considering that only the difference of the BLOB is stored each writer can send it's data
independently of other writers to the corresponding data-provider. In the first phase the
writing action can be done in parallel without any synchronization at all. In the second stage
the version manager responds to the writers requests by assigning a version number then
generate the corresponding metadata. The metadata of the new modified snapshot is sent
together with the metadata of the lower versions simulating this way an independent
snapshot. This second stage when the version manager responds to the writers assigning
them a version number needs however to be serialized by the version manager. Afterwards
the writers can function concurrently independent, thanks to the design of the metadata
scheme. To assure the consistency of the read data the order in which new snapshots are
made available for reading must be identical with the one assigned by the version manager.
This is not an impediment for the concurrent writing.

Concerning the readers they are completely independent as they access permanent snapshots,
the lower versions of the snapshots are always unmodified. Therefore the readers can
function completely parallel.

This is why it can be affirmed that this design supports read/read, read/write, write/write in a
concurrent way. This feature is a clear advantage of the BlobSeer over the HDFS — which
doesn't support concurrent writes to the same file at all.

5) Strong consistency semantics

Readers are guaranteed to see a new write when the following two conditions are satisfied:
(1) all metadata for that write was successfully committed and (2) for all writes that were
assigned a lower version number, all metadata was successfully committed.

Since a writer is assigned a version number only after it has successfully written the data,
condition (1) actually means: the writer has successfully written both data and metadata.
Even though the write primitive may have successfully returned, the write operation as a
whole may complete at a later time. Thus, condition (2) translates into: both data and
metadata of lower version snapshots have been successfully written, so all previous
snapshots are consistent and can be read safely. This naturally means the new snapshot can
be itself revealed to the readers. Both conditions are necessary to enforce linearizability.

3.3.3 Developing on BlobSeer

BlobSeer is a file-system which has special features developed for distributed systems. It is
built in C++ and uses API to work with Boost, Berkley DB, Libconfig libraries. A short
presentation of these libraries is necessary in order to start developing on BlobSeer.

23

Building an interface to access IAAS for BlobSeer

— Boost

Boost is a collection of free portable C++ source libraries. Boost libraries are intended to be
widely useful and usable on a large spectrum of application that use C++. To find out more
about Boost the Boost Official Website can be consulted [19].

- Libconfig

Libconfig is a simple library for processing structured configuration files which are written
in a format more compact and more readable, which is also type aware if comparing with
XML. [20]

- Berkley DB

Berkley DB is a transactional embedded data manager for un-typed data in basic key/value
data structures. This data manager stores all the data using pairs key-data. In oder to work
with this API we have consulted the official tutorial provided by Oracle - Getting Started
with Berkeley DB. [21]

3.4 Virtualization Technologies

The laaS cloud-computing model has become feasible to be implemented when a free
virtualization solution such as Xen Hypervirsor became available. Before virtualization,
turning over the control to the Cloud resources to each client was endangering the system
very much as users could easily subvert one of the Cloud's sites. The contribution
virtualization brings into the Cloud is isolating the leased resources from the site in a secure
way decreasing the risks brought by offering to users full control over their resources.
Actually with virtualization giving control to users over their remote resources isn't any more
a threat for the site owners. [7]

Other important assets that virtualization brings for the Cloud system is better mobility and
flexibility. Also virtualization made possible dividing a machine's resources according to the
client's demand.

3.4.1 Xen hypervisor

The Xen architecture is the most well thought-out virtualization technique on the market and
can operate on a wide variety of architectures as well as older CPUS, without supporting full
virtualization. Besides these advantages we have chosen to use Xen as a virtualization
solution for the VMM s because is well integrated with the Unix systems and lately has made
important steps to becoming a stable solution for cloud-computing, including Nimbus.

Xen boots from a bootloader like GNU GRUB and then usually loads a modified host
operating system into the host domain (dom0). Xen under Linux runs on x86. Also Debian
Lenny stable release version (the operating system we have used on all the Cloud's nodes)
include in it's repository Xen 3.2.1. On Xen the machines are very easy to deploy, administer,

24

Building an interface to access IAAS for BlobSeer

access and modify. Each machine uses a configuration file when it is deployed which can
contain a lot options — including networking configuration or how much RAM is allocated to
a certain machine. Also Xen provides a network bridge which if used with a DHCP server
can dynamically assign IP addresses to the virtual machines from a certain pool. This is an
important feature on the cloud considering that when deploying the virtual machines into the
Cloud is much expensive to use static IP addresses than randomly assigned ones.

3.4.2 Libvirt

Libvirt is an open-source management tool, for managing virtualized platforms like Xen or
KVM. In the version 2.4 Nimbus uses the libvirt to manage virtual machines for both KVM
or Xen virtualization solution. Libvirt uses the XML format for the VMM configuration files,
this files being generated by the service provider when parsing the configuration files. [30]

3.5 Checkpoint-Restart Approaches

In order to be able to use BlobSeer into the Cloud we must be able to stop and restart it from
a consistent state. In order to achieve this we have chosen to start implementing a
checkpoint-restart module for BlobSeer. Checkpoint-restart is a method to backup certain
states of the data, at certain moments — in order to be able to restart a software or bring a
certain database to a consistent state. [10]

Many ordinary batch processes like backup and restore operations on servers are time-
consuming. They consist of many units of work. If checkpointing is enabled, checkpoints are
initiated at specified intervals, in terms of units of work or of processing time, depending on
each application. At each checkpoint, intermediate results and a log recording the process's
progress are saved to non-volatile storage. The contents of the program's memory area may
also be saved.

The purpose of checkpointing is to minimize the amount of time and effort wasted when a
long software process is interrupted by a hardware failure, a software failure, or resource
unavailability. With checkpointing, the process can be restarted from the latest checkpoint
rather than from the beginning. [22]

Providing failure-tolerance for shared-memory in distributed systems using checkpoints is a
good method for long-running applications. The main achievement when using the
checkpointing techniques in such environments is conserving the system's consistency in
case of failure. There are three main approaches when implementing checkpointing in such
systems: uncoordinated checkpoints, coordinated checkpoints, communication-induced
checkpoints. [9], [10]

— Uncoordinated Checkpoints [10]

In the uncoordinated checkpoints method each entity determines its local checkpoint
independently and at restart it searches the set of saved checkpoints for a consistent state to

25

Building an interface to access IAAS for BlobSeer

which it can resume. Besides some obvious disadvantages that this approach has (like the
risk of the domino effect) this method wins by simplicity and good overall performance. Its
main advantage is the autonomy of each entity to save its state in the most convenient
moment. Eg: when certain time consuming operations are finished; when the state
information to be saved is small;

— Coordinated Checkpoints [10]

In the coordinated checkpointing approach, processes must ensure that global checkpoints
formed by local saved stated are guaranteed to be consistent. This is usually achieved by
some kind of two-phase commit algorithm. The coordinated approach eliminates the risk of
the domino effect [9] — as each process always restarts from its most recent consistent state.
Apart from this advantages, this method's weakness is the big latency involved in saving the
checkpoints — as a global checkpoint needs to be determined before checkpoints can be
written to stable storage.

— Communication-Induced Checkpoints

This method which is also called dependency induced assumes that each process
checkpoints its own state independently whenever this state is exposed to other processes
(these are called local checkpoints) In order to achieve a global consistent state processes
might need to take additional checkpoints (these are called forced checkpoints). The forced
checkpoint must be taken before the application may process the contents of the message,
possibly incurring high latency and overhead. In contrast with coordinated checkpointing, no
special coordination messages are exchanged in this approach. [10]

Checkpoints should occur frequently enough to minimize wasted effort when a restart is
necessary but not so frequently as to prolong the process unduly with checkpoint overhead.
Optimal checkpoint frequency depends on the mean time between failures (MTBF), among
other factors.

Considering the assets and drawbacks of each approach for the BlobSeer project we have
decided to implement the uncoordinated checkpoints method. This approach is the fastest
way of all, as it can be done in convenient moments for each process doesn't have the
overhead of assuring a global state.

26

Building an interface to access IAAS for BlobSeer

4 Our contribution
4.1 BlobSeer on the Cloud — Setup Description

The global picture of the setup described in this chapter can be seen in the Fig 8. In these
figure can be seen the main components of the Nimbus architecture, the means of
communication between these components and commands can be addressed to each
components. Furthermore in this architecture there are specified the main characteristic of all
the Nimbus elements and what assets each must have. Besides Nimbus this figure also
includes how BlobSeer will be deployed on the Cloud.

Characteristics Characteristics
- connects client and VMM - accesible through root user
- protocol adapter -> messaging - Xen Hypervisor, Libvirt, DHCP Server, Ebtables
- security: ssh, X.509 certificates - Enough RAM memory
- networking - VM control: staging, stoping, pausing
- public IPs, - Integrating a VM into the network: MAC + IP

- private IPs via VPN

Workspace Servicelml Commands to VMMs — || Virtual Machine Manager
kerun3 <3 — Kerunl

A4

7
\ MNotifications from VMMs

"™ The Workspace Back-end

L
e, Contains Pool Nodes with
£ “BlobSeer's components:
L :

o VM, PM, P, MP

-- run, --statug,|--terminate Push/Pull M

ssif communichtion

Y
v ot
L -- transfer, -- list, --security = .
' ! Reposito - Kerun2
Client - elfe Q > P ry
Characteristics Characteristics
- specifies the cloud propreties: - GridFtp
- interface WRSF, EC2 - the VMM images

- on click access to the Cloud

Fig 8 Global Architecture — Nimbus

27

Building an interface to access IAAS for BlobSeer

4.1.1 Nimbus Deployment

These description of the setup we have done will cover all the settings we had to modify or
had some difficulties finding them. We started from the Cloud administration guide —
Quickstart, version 2.4, on the Nimbus official site. We will give details for each of the
Nimbus components.

4.1.1.1 The Client

The Cloud Client's purpose is to offer on click access to the Cloud for the end user from any
kind of devices. Here we installed the the package Cloud Client 015 from the Nimbus
official downloads web page.

The cloud client uses this credential to make contact with the service and the GridFTP server
(which can be on separate nodes), sending the relevant commands to the relevant endpoint
(authenticating anew with each new request) like in the Fig 8 - Global Architecture —
Nimbus:

The X.509 authentication certificates for the clients can be found in the folder
/home/student/.globus/ as follows:

* hostcert.pem - The host certificate. The certificate for the issuing CA must be in
the Nimbus trusted-certs directory, in hashed format.

* hostkey.pem - The private key. Must be unencrypted and readable by the Nimbus
user.

* usercert.pem — The certificate for the Nimbus user. In our deployment we have
used nonroot user named student.

* userkey.pem — the private key for the user.

After installing this package and configuring the authorization certificates is important to
know where the configuration and logging files can be found and what errors one might
encounter on the road.

The configuration files for the client are located in SGLOBUS LOCATION/conf folder.

The history (logs, configuration) files are located in SGLOBUS LOCATION/history/vm-
number. The only configuration file we have modified for the client is cloud.properties. The
list with all the available options can be found on Nimbus client configuration page [28].

Next we will specify and explain the configuration option we have used in our configuration.

. ssh.pubkey=~/.ssh/id_rsa.pub # the components of the cloud connect to each other
using ssh and rsa public/private key pairs

. vws.factory=kerun3.hpc.pub.ro:8443 # the dns:port where the workspace service
launch its services

28

Building an interface to access IAAS for BlobSeer

. vws.repository=kerun2.hpc.pub.ro:2811 # the dns:port of the gridftp server

. vws.factory.identity=/0=Grid/0OU=GlobusTest/OU=simpleCA-
kerun2.hpc.pub.ro/CN=host/kerun3.hpc.pub.ro # the CA identity

. vws.cahash=cd97fdbl # the hash for CA certificate

. vws.memory.request=300 # how much RAM memory is allocated to each virtual
machine

. vws .metadata.mountAs=xvdal # the divices for virtual machine are mounted
differently than from a host machine (/dev/sda)

. vws.metadata.association=public # the name for virtual machines networking pool

. vws.metadata.vmmVersion=3 # the xen version

We had an issue regarding the xvdal option. Nimbus defaults to /dev/sda based names, but
this can be changed to the more recent fap.aio based xvda conventions as follows.

vws .metadata.mountAs=xvdal

In order to be able to communicate with the Repository and the Workspace Service the Client
has to initialize the authentication based on X.509 certificates.

$NIMBUS_LOCATION/bin/grid-proxy-init.sh hours 240

With the following sets of commands we will be able to find out valuable information about
the virtual machines deployed on the cloud.

¢ Commands to the Repository

The next command gives information about the used X.509 certificate:
student$ GLOBUS_LOCATION/bin/cloud—client.sh —security
/opt/nimbus-cloud-client-014/1lib/certs

Credential in use:

- Identity: '/0=Grid/OU=GlobusTest/OU=simpleCA-
kerun2.hpc.pub.ro/0OU=hpc.pub.ro/CN=student'

- Subject: 'O=Grid,O0U=GlobusTest,OU=simpleCA-
kerun2.hpc.pub.ro,OU=hpc.pub.ro,CN=student,CN=1258301832"

- Issuer: 'O=Grid,OU=GlobusTest,OU=simpleCA-kerun2.hpc.pub.ro,0U=hpc.pub.ro,CN=student’

The next command lists all the available virtual machines from the repository which are
ready to be launched. This machines are built to be able to run on Xen.

$GLOBUS_LOCATION/bin/cloud-client.sh —list
/opt/nimbus-cloud-client-014/1lib/certs
[Image] 'BlobSeer' Read/write

Modified: Apr 23, 2010 @ 14:42 Size: 3250585600 bytes (~3100 MB)

* Commands to the Workspace-Service

29

Building an interface to access IAAS for BlobSeer

In order to launch a certain machine the following commands can be used. This command
will offer a lot of info regarding the machine's hardware and startup configuration, like
networking.

$GLOBUS_LOCATION/bin/cloud-client.sh --run --name part2 -hours 240

4.1.1.2 The Workspace-Service

The main purposes of this component is to be a communication interface between the Client
and the VMM, a messaging adapter. Here we have installed the nimbus service, version 2.4
from the official Nimbus project download page.

In the default install, Nimbus uses two files to manage authorization of users on the remote
interfaces: users with X.509 credentials are checked against a grid-mapfile and users of the
EC2 Query frontend are checked against the query users.txt list. In this setup we used X.509
credentials. In order to setup an access control list Workspace Service is using the
SGLOBUS LOCATION/etc/nimbus/nimbus-grid-mapfile. This file specifies which remote
identities can access the container or a specific service. However one needs to ensure that
any identity specified in this file is from a "trusted" Certificate Authority. CAs are trusted by
placing their certificate in the trusted-certs directory (by default:
"$NIMBUS HOME/var/ca/trusted-certs/"). [29]

The configuration files we have modified for the Workspace Service component are located
in the SCONF_GLOBUS folder.

export $CONF_GLOBUS=$GLOBUS_LOCATION/etc/nimbus/workspace-service.

All the settings are loaded when the globus-start-container is launched. If you change any
settings you have to reload this server. Attention each time you reload this server it won't see
the machines that were already started on the Workspace control. (the notifications from the
Workspace Control won't get to this new instance of the Workspace Service).

In the SCONF_GLOBUS location there are files containing important settings for the
workspace service:

* logging.conf Here we have set all the logging options to yes.
$CONF_GLOBUS/logging.conf and the logs for each machine are located in
$GLOBUS LOCATION/var/nimbus. Here you can find information about
accounting, reservations, caches, received notifications from the Workspace
Control and Client

* ssh.conf In this file we set up root user to connect the Workspace Control:
“control.ssh.user=root”

* accounting.conf The minimum amount of time the charge is rounded to 1 minute.
charge.granularity=1

* vmm-pools: pooll

node name memory to _manage networks supported

30

Building an interface to access IAAS for BlobSeer

kerunl 1524 *

The first column represents the Workspace Control name. If you have more workspace
controls you can specify each in a row. The second field represents the maximum memory
that can be occupied on the workspace control by the virtual machines. If third field is blank
or * it is assumed that all networks are supported. When all the memory specified in the
second column has already been used and the client wants to launch another machine on that
Workspace Control it will receive the following error message.

$GLOBUS_LOCATION/bin/cloud-client.sh --run --name 12 -hours 240

Problem: Resource request denied: Error creating workspace(s): No resource pool has an
applicable entry

Problem running 'vm-195'.
* network-pools/public;

we have configured the public pool configuration file using the private network
192.168.122.0/24 with the following elements in the pool:

pub02 192.168.122.12 192.168.122.1 192.168.122.255 255.255.255.0
pub03 192.168.122.13 192.168.122.1 192.168.122.255 255.255.255.0
pub03 192.168.122.14 192.168.122.1 192.168.122.255 255.255.255.0
pub03 192.168.122.15 192.168.122.1 192.168.122.255 255.255.255.0

pub03 192.168.122.16 192.168.122.1 192.168.122.255 255.255.255.0

— Deployment

After configuring everything on this component we should initialize the authentication based
on X.509 certificates with.

$GLOBUS_LOCATION/bin/grid-proxy-init (-)hours 240

The next step is to start all the necessary services that would allow the client to communicate
with the VMM.

$GLOBUS_LOCATION/bin/globus-start-container -debug

4.1.1.3 The Repository

This component's function is to store the VM images. Here we have installed GridFTP (an
extension of the FTP standard) server from the Globus Website.

For starting the authentication process you have to run the next command.

$GLOBUS_LOCATION/bin/grid-proxy-init

The repository also uses X.509 certificates located at /home/student/.globus/simpleCA.

31

Building an interface to access IAAS for BlobSeer

After finishing the configuration we only have to start the GridFTP server using

$GLOBUS_LOCATION/sbin/globus-gridftp-server &

4.1.1.4 The VMMs

The VMM node is the node with which manages all the virtual machines. The privileged
account on the service node needs to be able to SSH freely to the VMM (without needing a
password). And vice versa, the privileged account on the VMM nodes needs to be able to
freely SSH back to the Workspace Service nodes to deliver notifications. On this node we
have installed the Workspace-Control and the Xen Hypervisor.

The configuration files from the VMM are located in
$GLOBUS LOCATION/etc/workspace-control. This settings are loaded by the Workspace
Service when a virtual machine starts.

The logs of workspace environment for each machine goes to
$GLOBUS_LOCATION/var/workspace-control/logs. There are different logs per machine
for each operation create/propagate/remove. The logs settings can be modified from
logging.conf.

The virtual machines image are staged to $GLOBUS LOCATION/var/workspace-
control/secureimages.

We will specify here the most important settings we have used:

— main.conf
[vmcreation]

num_cpu_per_vm: 2
— kernel.conf

Instead of the default setting "authz kernels: fake-vmlinuz-2.6-xen" the option
"authz kernels: vmlinuz-'uname -1’ should be use. Also if commented the setting
"matchramdisk: -initrd" should be uncommeted.

- libvirt.conf
[libvirt]

vmm: xen3 # this specifies to the Workspace Service we are using Xen as a Virtualization
solution.

[libvirt_connections]

xen3: xen:/// # this is the string to which the virsh should connect
- networks.conf

Here are mentioned information about the bridge to create for each virtual machine. we have
used the following settings.

32

Building an interface to access IAAS for BlobSeer

[bridges]

ethO: 192.168.122.0/24

[dhcp-bridges]

BRIDGENAME-CHOSEN: DHCPD-LISTENING-INTERFACE

ethO: ethO #this means that the Domain 0 of the xen (de default domain) is listenting on

eth0 (in our case eth0:0) and this is also the interface on which the dhcp server is
listening.

As these settings are very important for being able to access the deployed virtual machines
anwe will mention more details for the configuration.

On the Workspace constrol we have the following network settings:
student@kerunl $/sbin/ifconfig

eth0 - inet addr:192.168.2.100 Bcast:192.168.2.255 Mask:255.255.255.0
eth0:0 - inet addr:192.168.122.1 Bcast:192.168.122.255 Mask:255.255.255.0
wrksp-158-0 // and a bridge for each of the powered on virtual machine
student@kerunl

Sbrctl show

bridge name bridge id STP enabled interfaces
eth0 8000.001a921598c1 no peth0
wrksp-158-0

For each started virtual machine an ebtables rule is added in order to only allow traffic to and
from those virtual machines. Use ebtables -Ln to see what rules were added for your virtual
machines.

- xen.conf

Depending on how is your virtual machine image created the option tap:io or file should be
used for

[xencreation]

disk driver:file

When all the configuration are done properly we will be able to:
a) Start the Xen network-bridge

sudo /etc/xen/scripts/network-bridge start

b) Start the Dhep Server which give IP-s to the Virtual-Machines

sudo /etc/init.d/dhcp3-server restart

After deploying some virtual machines on the cloud the virsh tool can be used. This tool is
provided by libvirt in order to list information about the virtual machines and to connect to
these virtual mashines.

33

mailto:student@kerun1
mailto:student@kerun1

Building an interface to access IAAS for BlobSeer

a) List the current started virtual-machines

student$ virsh list

b) Connect to a certain machine
student$ virsh console machine name

It it important to mention that installing this Cloud involved a lot of research as the
administration guide from the Nimbus official site only doesn't offer support for all the
components. A helpful resource for this is the Nimbus administration discussion list.[32]

4.1.2 Virtualization Solution — Xen Setup

Because when deploying Nimbus we encountered some problems with Xen we will provide
here what environments we have tested before getting to a stable working setup.

Because we wanted to have the latest stable version of the free Linux OS — we initially
wanted to use Ubuntu 10.4 — but unfortunately this version doesn't include anymore xen-
tools into its repository and configuring a kernel image especially for Xen requires having
special hardware support for Xen. So installing Xen from it sources on Ubuntu 10.04 proved
to be a bad choice.

Among other OS we have tested there is Ubuntu 8.04 which has almost all the needed
packages in the repository. However there were some problems with this distribution also.
Fortunately all these problems were resolved. An issue which we found difficult to solve was
with the libvirt version, which was too old for the Nimbus setup.

Eventually we installed Xen on Debian latest stable version Lenny. Here we installed the
following packages:

student$ dpkg -1 | grep xen
libc6-xen, libxen-dev, libxenstore3.0, linux-headers-2.6-xen-686, linux-headers-2.6.26-2-

common-xen, linux-headers-2.6.26-2-xen-686, linux-modules-2.6-xen-686, xen-hypervisor-
3.2-1-i386, xen-shell, xen-tools, xen-utils-3.2-1, xen-utils-common, xenstore-utils

After installing all the needed packages we have made the following configurations on the
main configuration file xend-config.sxp, from /etc/xen.

(logfile /var/log/xen/xend.logq)

(loglevel DEBUG)

(xen-api-server ((unix)))
(xend-http-server yes)

(xend-unix-server yes)

(xend-unix-path /var/lib/xend/xend-socket)
(network-script network-bridge)

(vif-script vif-bridge)

34

Building an interface to access IAAS for BlobSeer

(dom0-min-mem 196)
(domO-cpus 0)

When the configuration process was over the xend needs to be started. We also added this
action to be done when the servers starts.

/etc/init.d/xend start

Libvirt is another tool that we need to install for the version 2.4 of Nimbus on the workspace
control — the VMM. On Debian Lenny the libvirt version 0.4.6, which we downloaded from
the repository had a bug. The file src/python/workspacecontrol/defaults/lvrt/lvrt common.py
had more then one function named createXML - and the Workspace-Control would get
confused. The solution we found was renaming these functions. Because we were still
receiving errors from the Workspace Service we dug deeper and found that the function that
should have been named create XML was actually called createLinux. After repairing this we
didn't had any more problems with libvirt.

4.1.3 BlobSeer Setup

For installing and deploying BlobSeer we followed the tutorials from the BlobSeer website.
However as we encountered some problems along the way a more detailed tutorial which
includes also a way to track problems during the installation and deploying process can be
found at Annexe 1 — Installing and Deploying BlobSeer.

Each of these machines will have BlobSeer installed on them and will be configured to start
with a certain instance on it. As a virtualization solution we have used Xen. In order to start
each of the instances described in section 3.1.1 we need to do the followings:

Version Manager

$BLOBSEER_HOME/vmanager/vmanager localhost-config-file.cfg
Provider Manager

$BLOBSEER_HOME/pmanager/pmanager localhost-co4nfig-file.cfg
Provider

$BLOBSEER_HOME/provider/provider localhost-config-file.cfg
Metadata Provider

$BLOBSEER_HOME/provider/sdht localhost-config-file.cfg

After we have started all the BlobSeer components we are able to create BLOBs and to
write/read to/from them with the following commands:

Create Blob

./create_blob /tmp/blobseer.cfg 8 1

Write to last created BLOB

./test W 1 /tmp/blobseer.cfg

35

Building an interface to access IAAS for BlobSeer

Read from last created BLOB

./test R 1 /tmp/blobseer.cfg

Once the BlobSeer was on the cloud we needed an interface to be able to easily start and stop
BlobSeer on the Cloud. We have managed to deploy this interface using bash scripting as
presented in the chapter 4.3 Command Line interface for controlling BlobSeer in the Cloud.
These instances communicate using ssh access thus between the BlobSeer machines we
assure ssh access with public/private keys for the user student.

4.2 BlobSeer checkpoint-restart inside Nimbus Cloud

4.2.1 Existing approach on checkpoint restart in BlobSeer

BlobSeer is a strong application which besides having an efficient algorithm when working
with huge amount of data also has the base for being able to restore the state of some
elements after restarting them. The Provider Manager is a component that is able to restore
its data after being restarted. This happens because the Provider is designed to send messages
to the Provider Manager at certain intervals of time and this way the Provider Manager is
able to regenerate the Providers table very fast after being restarted. The other components,
Version Manager, Provider, Metadata Provider, of BlobSeer were not able to recover from a
consistent state after restart, therefore we will describe next how we implemented support for
incremental checkpoints on them.

4.2.2 Our approach on checkpoint restart in BlobSeer

BlobSeer is a storage application specially developed for storing data in distributed systems.
This system provides support for working with huge amount of data divided into BLOBs
identified through an unique Id, offers fine-grained access to the data, uses versioning, has
very high throughput even under heavy access concurrency in any combination: read/read,
read/write, write/write. However as this software is still in research state it has some
shortcomings that needs to be solved.

BlobSeer was built as a very efficient storage application which works with data saved into
the RAM memory (a volatile memory). A weak point that BlobSeer has into the Cloud is not
being able to start from a consistent state. This application always starts working from zero
data, so all the processed data are lost if the administrator decided not to use the Cloud for a
period of time or if a system failure. In other words one lack that needs to be fulfilled before
porting BlobSeer to the Cloud is implementing the support to be able the make scheduled
restarts without losing the already processed data. One of the Clouds big advantage is that
one can shutdown his application and stop using the Cloud when it doesn't need it without
losing his current data. This is rather an important issue as the Cloud client pays for each
rented byte and on the Cloud the user is able to get the Cloud's infrastructure on-demand.
The client doesn't need to pay if in certain periods doesn't use the infrastructure. In this
contexts being able to restart the application from a consistent state is a very important
feature that BlobSeer needs to have when integrated with the Cloud. As a result in order to

36

Building an interface to access IAAS for BlobSeer

prepare BlobSeer for the Cloud we need to assure consistent states of this storage layer at
certain moments in time. This will also help to make this file storage system more reliable to
failure.

In order to assure starting BlobSeer from a consistent state we have considered a checkpoint-
restart approach. Basically we will be storing a snapshot of the current application state —
and later on we will use it for restarting the application from that consistent state. This restart
can be done in case of failure or simply for administration decisions. Before choosing how to
take these checkpoints we have considered the following aspects

— The BlobSeer's algorithm is based on achieving high performance when working
with very big amounts of data. The key point of this algorithm is being able to do
most of its operations in parallel using locking as little as possible. The method that
would bring fault tolerance to BlobSeer shouldn't affect the great advantage BlobSeer
brings, this being it's great speed when working with very big sets of data.

— Doing a snapshot adds the overhead of saving the data to a non-volatile memory.
Performing to many snapshots could affect the system performances. This is why is
better to be able to have a strict procedure for taking these snapshots. Therefore a
good choice would be performing checkpoints when scheduled by an administrator
of the system or automatically at fixed moments in time. Making to many snapshots
of the system might contribute to making BlobSeer a slower application. Deciding
when it's the best time to make a global checkpoint is quite difficult.

— The processes of BlobSeer run in parallel and need to communicate between them
only when they've finished a read/write operation so we might admit that “most of
the time” these entities run independently.

— As we have presented earlier in the 3.5 Checkpoint-Restart Approaches chapter, there
are various ways of doing snapshots — each having its advantages and disadvantages.

After acknowledging the points above we have decided that the best way to go first is
choosing to implement “uncoordinated checkpoints™. This method implies that each process
in the system will store each consistent state. Main advantages of this method are providing a
good performance and in the same time the autonomy of each entity to “chose” the best
moment to save its state. As a result this implementation also maintains the good
performance the BlobSeer has without our module and also made it an application well
integrated with the Cloud.

4.2.3 Solution implementation

When running BlobSeer into the Cloud system we need to develop new features like
failure-tolerance the ability to start this application from a consistent state. In order assure
starting BlobSeer from a consistent state before shutdown we have chosen to implement a
incremental checkpoints for the reasons described in the previous paragraph. Next we will
describe in detail how we have implemented the uncoordinated checkpoints on BlobSeer.

37

Building an interface to access IAAS for BlobSeer

Next we will describe what modification we have done on each of the BlobSeer components:
— Provider and Metadata Provider

These two entities have to be added the functionality to save the data on the disk into a
database at certain time intervals and when started first to load last saved data back into
RAM. In order to do this we used the Berkley DB library and API as this provides high-
performance embedded database with bindings also in C++, the language in which BlobSeer
is developed.

BDB stores arbitrary key/data pairs as byte arrays, and supports multiple data items for a
single key. BDB can support thousands of simultaneous threads of control or concurrent
processes manipulating databases as large as 256 terabytes, on a wide variety of operating
systems including most Unix-like and Windows systems, and real-time operating systems.
[21]

The functionality of restoring the keys from Berkley DB database is added in the template
used in a failure-tolerant scenario <bdb bw map>. In this scenario BlobSeer uses a
database to store the Provider and Metadata Provider data, data that is normally kept only
into RAM. We used the support to save the data stored into RAM to the Berkeley DB
database at certain time intervals and we added loading the data from that database back into
RAM. In order to implements this store/load system we used the Berkley DB API because
this type of database is very scalable and has good performances when working with big sets
of data. To conclude for the Provider and the Metadata Provider we modifies the template
<bdb_bw_map> that is used by both entities as a template when each of these processes is
started. The code for this implementation is presented in the 9.2 Annexe 2 — Checkpoints for
Provider and Metadata Provider.

— Version Manager

Implementing the system described above on the Version Manager implies saving a
serialized version of the data that currently is only kept in the RAM. Thus when the
command to save the state is sent these parts save their serialized data into files. At restart
the data is restored from those files back into RAM memory. As a consequence this entity is
able to start working from the last created BLOB. The class that needs to be modified in
order make the Version Manager able to restore its state before restart is the vmanagement
class. In this class we have modified the method create, method responsible for creating the
BLOB, and the constructor as described in the Anexe 2 — 9.2 Checkpoints for Version
Manager.

— Provider Manager

As described in chapter 4.2.1 Existing approach on checkpoint restart in BlobSeer — the
provider already has a good way of regenerating the table with all the Provider Managers in
the system. Consequently in this project we have just tested this functionality on the Cloud.

38

Building an interface to access IAAS for BlobSeer

4.3 Command Line interface for controlling BlobSeer in the Cloud

In this section we will describe the interface we use to deploy the Nimbus Cloud “on click”
from the end user side and how to run the BlobSeer instances with a single script after the
Cloud was started.

In order to start the Cloud system one needs to run the script ./start_cloud.sh from the Cloud
client with the following arguments:

student@elfe:~$./cloud deploy

-u student -r kerun2 -s kerun3 -c kerunl -e elfe

All operations succesfully finished!

Usage: cloud deploy options -u <username> -r <repo_hostname> -s
<worskspace_service hostname> -c <workspace control hostname> -e <end user_hostname>

The complete content of this bash script can be seen in the Annexe 3 — Scripts for Command
Line interface for BlobSeer. Behind this script there are the following operations:

Begin authentication process based on X.509 certificates for the components Client,
Workspace-Control, Workspace-Service.

Start the GridFTP server which will make possible the transfer of the virtual
machines from the client to the Repository and from the Repository to the VMM
using the Workspace-Service.

Run all the necessary services on the Workspace-Service in order to receive and run
the commands received from the Client, receive update messages from the VMM and
transfer them to the Client.

Deploy the machines we have configured on the VMM. The deployed machines have
300 MB memory RAM, are from the network 192.168.122.0/24 and are in the range
192.168.122.12 — 192.168.122.20.

The operation of starting the cloud with 5 virtual machines usually takes from 15 to 20
minutes. This operation includes copying each machine from the Repository node to the
VMM. On a real cloud this operation will surely last less as the networking protocol inside
the Cloud would usually support better broadband.

As soon as the Cloud is started we can start the BlobSeer service on the Cloud by using the
script SBLOBSEER_HOME/scrips/bl cloud deploy.sh. By running this script we are
performing the following operations:

Start the Provider Manager and Version Manager on the first virtual machine
deployed on the Cloud.

Start 2 Providers and 2 Metadata Providers on the virtual machine deployed second
and third, respectively fourth and fifth.

39

Building an interface to access IAAS for BlobSeer

— The Provider and Metadata Provider loads in their RAM the last written.

— The Version Manager loads information about all the BLOBs created previously
restart.

— The Provider Manager will “discover” all the Providers in the system and this way
will be able to reconstruct its provider table.

The action of deploying all the clouds components into the cloud depends on the ssh speed
connectivity, which is very fast on the LAN (our case). The discovering protocol for the
Provider Manager depends on the number of Providers in the system, as each Provider will
send an acknowledge message each 5 seconds. The action of restoring for the Provider the
last written data usually takes 30 seconds at restart.

If we need to shut down all the BlobSeer components we need to do run the script
$BLOBSEER_HOME/scrips/bl_cloud kill.sh. This script just does pkill on all the BlobSeer
components that were deployed on the [aaS Nimbus Cloud.

We are also able to stop the virtual machines using the Cloud Client and to save the machine
state with the same name, or with a new one (creating this way another xen image).

If we only need to start/stop one component from BlobSeer we can use the script available
for each component in the $BLOBSEER HOME/scripts folder from the client PC,
<component>_kill/start.sh

After we received the “All done!” message the client is able to create BLOBs and to do
write/read operations on them. In order to perform these operations the executables
Jcreate blob and /test W/R can be used exactly as they would be used on localhost. There is
no need to concern about these operations as they use the configuration file /tmp/blobseer.cfg
generated when all the components were started and discovered each other.

4.4 Tests
4.4.1 First Scenario: Deploying the first machine on the Cloud

For this scenario we have deployed the setup described in the chapter 4./ Blobseer on the
Cloud — Setup description and tested the Cloud system by running a virtual machine with the
networking and memory settings we have configured. Also an important action that needed
to be tested was the ability to connect from the Client (elfe) on that virtual machine. As one
of our goals was using private IPs (using public IPs for the virtual machines deployed on the
Cloud is much more expensive than using random public IPs) we had to configure the client
to be able to connect to the VM network through VPN.

The global picture of this test can be easily understood from the Fig 9

After deploying the virtual machine we are able to see the IP assigned to the machine by
running:
student@elfe:~$ $GLOBUS_LOCATION/bin/cloud-client.sh --status

[*] - Workspace #181. 192.168.122.12 [pub02]

40

Building an interface to access IAAS for BlobSeer

State: Running

Duration: 14400 minutes.

Start time: Fri Jul 02 05:31:14 EDT 2010
Shutdown time: Mon Jul 12 05:31:14 EDT 2010
Termination time: Mon Jul 12 05:41:14 EDT 2010
*Handle: vm-213

Image: 202

In order to connect to the machine we have just deployed we can just use ssh (as we are
connected through VPN to that private network). Another important point is that if we run
dhclient on that virtual machine it will receive the same IP — because the Workspace-Control
grants a certain [P by matching it with the MAC address.

Step-by-step - Starting a machine into the Cloud

1. The command run by the Workspace Service when starting a machine on the Cloud. This
command represents that the Workspace Service copies the solicited machine from the

repository to the workspace control. (--propagate) with the following command:
/usr/bin/env python /opt/nimbus/src/python/workspacecontrol/main/wc_cmdline.py -c
/opt/nimbus/etc/workspace-control/main.conf --propagate --name wrksp-158 --images
scp://kerun2.hpc.pub.ro/cloud/5456a325/12 --notify

kerun3.hpc.pub.ro:22//home/student/instal nimbus/services/var/nimbus/msg-
sinks/notifications

2. After propagation command the workspace instance is created
WORKSPACE INSTANCE CREATED:

- Name: 'https://kerun3.hpc.pub.ro:8443/vm-192"

- Start time: Jun 30, 2010 7:14:59 AM

- Shutdown time: Jul 10, 2010 7:14:59 AM

- Resource termination time: Jul 10, 2010 7:24:59 AM

- Creator: /0=Grid/OU=GlobusTest/OU=simpleCA-
kerun2.hpc.pub.ro/OU=hpc.pub.ro/CN=student

- ID: 160, VMM: kerunl

3. The machine is launched with the options gathered from the Client, Workspace Service
and Workspace Control

/usr/bin/env python /opt/nimbus/src/python/workspacecontrol/main/wc_cmdline.py -c
/opt/nimbus/etc/workspace-control/main.conf --create --name wrksp-160 --memory 300
--networking ethO; public; A2:AA:BB:9C:BB:48; Bridged; Static; 192.168.122.12;
192.168.122.1; 192.168.122.255; 255.255.255.0;192.168.2.1; pub04;null;null;null;null

--images file://13 --imagemounts xvdal --mnttasks 7ad66523-bbb2-4475-
a3fd;/root/.ssh/authorized keys

Step-by-Step - Save a machine with a different name is done by creating another machine
image on the repository

1. The workspace service gracefully shutdowns your machine

41

Building an interface to access IAAS for BlobSeer

2. Copies (--unpropagate) the modified machine with the new name if this is the case
from the VMM to the Repository.

ssh -n -T -o BatchMode=yes root@kerunl /opt/nimbus/bin/workspace-control.sh --unpropagate
--name wrksp-156 --images scp://kerun2.hpc.pub.ro/cloud/5456a325/part2 --unproptargets
scp://kerun2.hpc.pub.ro/cloud/5456a325/14 --notify
kerun3.hpc.pub.ro:22//home/student/instal nimbus/services/var/nimbus/msg-
sinks/notifications

IP: 192.168.2.100

Bridge IP: 192.168.122.1
Bridge Network: 192.168.122.0/24

IP: 192.168.2.121 DHCP Range: 192.168.122.12-255
VPN Server
Workspace Service Commands to VMMs - — || virtual Machine Manager
kerun3 , Lt — Kerunl
A Notifications from VMMs —

{ % The Workspace Back-end

First Machine

-1P:192.168.122.12
K - RAM: 300 MB

-- run, --statu R -CPUs: 2

--terminate, --sa Push/Pull VM Images - 05: Debian Lenny

&

sshf communication

VPN_,.A-""N

Internet

vl x
-- transfer, -- list, --security - -
Client - elfe i » Repository - Kerun2

Inside IP: 192.168.2.102
Internet IP: 141.85.99.186 IP: 192.168.2.106
VPN IP: 192.168.122.3

Fig 9 — Deploying the first virtual machine on the Cloud

4.4.2 Second Scenario: Starting more components of BlobSeer on the Cloud

This test is graphically represented in Fig 10. For this test we have started five virtual-
machines on the Cloud and run the script ./cloud deploy from the cloud client. The effect of
this script was deploying a Version Manager an Provider Manager on the machine
192.168.122.12, two Providers on 192.168.122.13, 192.168.122.14 and two Metadata
Providers on 192.168.122.15, 192.168.122.16.

./cloud_deploy.sh

192.168.122.12:

notroot@debian:~/blobseer/downloads/release-0.3.3/test$ netstat -tlpn

tcp 0 0.0.0.0:2222 0.0.0.0:%* LISTEN 4020/vmanager

42

Building an interface to access IAAS for BlobSeer

tcp 0 0.0.0.0:1111 0.0.0.0:%* LISTEN 3895/pmanager
192.168.122.13-192.168.122.14:
notroot@debian:~/blobseer/downloads/release-0.3.3/scripts$ netstat -tlpn

tcp 0 0.0.0.0:1235 0.0.0.0:%* LISTEN 8421/provider
192.168.122.15-192.168.122.16:
notroot@debian:~/blobseer/downloads/release-0.3.3/scripts$ netstat -tlpn

tcp 0 0.0.0.0:1234 0.0.0.0:%* LISTEN 8276/sdht

IP: 192.168.122.12

.168.122.16

P
IP: 192.168.122.15

VPN IP: 192.168.122.3
Cloud Client - Elfe
lobSeer Client

Fig 10 — Starting more components of BlobSeer on the Cloud

4.4.3 Third Scenario: Test Checkpointing for Provider/Metadata Provider

This test scenario is graphically represented in the Fig 11. For performing this test we have
used the 5 virtual machines from the previous test. For testing that the Provider of Metadata
Provider restores its data from the database, we have used a file to write the data the
Provider/Metadata Provider has after restart, but before performing any read/write action
thus proving that this entity loaded the keys from the database. This file is named
“show_restored data ” and we will use it only for testing.

192.168.122.13: ./provider kill.sh

192.168.122.13: cat show_restored data

empty file

192.168.122.13: ./provider_deploy.sh

192.168.122.13: cat show_restored data

3 65 72 69 61 6¢c 69 7a 61 74 69 6f 6e 3a
0 0 08 ffffffac fffffff4 ffffff9c £ 2 0

in while keie: (Size = '61', Data = '
3a 61 72 63 68 69 76 65 7 4 4 4 810
0000080000O0OO0CTO0")

16 0 0 0 7
00001

data:(Size = '8', Data = '3a 3a 3a 3a 3a 3a 3a 3a')

[-.-]

43

Building an interface to access IAAS for BlobSeer

The data written before the provider was killed has been restored.

[1r1 R Klwmp2[J mP1

g/

VPN IP: 192.168.122.3
Cloud Client - Eife
BlobSeer Client

Fig 11 — Test Checkpoint functionality for Provider/Metadata Provider

4.4.4 Fourth Scenario: Test Checkpointing for Version Manager

This test is graphically represented in the Fig 12. In order to test the consistency of the
Version Manager we have restated this component and checked if a new created blob was
given an incremented from the value before restart.

Creating 2 BLOBs

notroot@debian:~/blobseer/downloads/release-0.3.3/scripts$./cloud-deploy.sh
notroot@debian:~/blobseer/downloads/release-0.3.3/test$./create_blob test.cfg 8 1
create result = 1, id =1

Blob created successfully.

notroot@debian:~/blobseer/downloads/release-0.3.3/test$./create_blob test.cfg 8 1
create result = 1, id = 2

Blob created successfully.

Restarting Version Manager
notroot@debian:~/blobseer/downloads/release-0.3.3/scripts$./vm _kill.sh

kill version manager

remote_launcher ssh 192.168.122.12 "pkill vmanager || echo could not kill vmanager"
All done!

notroot@debian:~/blobseer/downloads/release-0.3.3/scripts$./vm_deploy.sh

44

Building an interface to access IAAS for BlobSeer

X = 192.168.122.12

All done!

Creating third BLOB:
notroot@debian:~/blobseer/downloads/release-0.3.3/test$./create_blob test.cfg 8 1
create result = 1, id = 3

Blob created successfully.

VPN IP: 192.168.122.3
Cloud Client - Elfe
BlobSeer Client

Fig 12 — Test Checkpointing for Version Manager
4.4.5 Fifth Scenario: Test Checkpointing for Provider Manager

This test scenario is graphically represented in the Fig 13. For performing this test we have
started the followings providers 192.168.122.13 , 192.168.122.14 . We have done a write
operation and the provider manager assigned data to be written by both providers. We have
restarted the Provider Manager and it still continued to write to both providers, proving that
the provider table was restored.

192.168.122.12: pkill pmanager

192.168.122.12: /home/notroot/blobseer/downloads/release-0.3.3/pmanager/pmanager
/tmp/blobseer.cfg >/tmp/blobseer/pmanager/pmanager.stdout
2>/tmp/blobseer/pmanager/pmanager.stderr&

45

Building an interface to access IAAS for BlobSeer

VPN IP: 192.168.122.3
Cloud Client - Elfe

BlobSeer Client

Fig 13 — Test Checkpointing for Provider Manager

46

Building an interface to access IAAS for BlobSeer

5 Resources

The Cloud system is supposed to be installed on a large collection of servers from which
there are used as many nodes as there are required by the Cloud user. However because the
purpose of this project didn't include any load-balancing tests a laboratory environment was
enough to test the integration between BlobSeer and Nimbus cloud system. Because we had
encountered more challenges regarding the hardware and software resources we will
describe here the resources we had available for this project.

5.1 Hardware

The hardware resources used to install the Nimbus components consisted of four computers
with dual core CPU at 2.53 GHz and 2 GB of RAM. On each of these stations we have
installed one component from Nimbus. These resources limited how many virtual machines
we could deploy on the cloud and also how much RAM memory we could assign to each
machine. Concerning the non-volatile memory we can say we had more than we actually
needed. On the Repository, the component that used this memory to store the virtual machine
images we had 300 GB and we only used 10 % of it.

Another important hardware related aspect concerns the networking resources. In this project
we used a LAN with the bandwidth limited to 100 Mb/s. In a real Cloud the network
performances could easily increase which will influence positively the time of deploying a
virtual machine into the Cloud and the overall communication time between the Cloud
elements.

5.2 Software

The operating system used on each Nimbus component including on the virtual machines
with BlobSeer was the Debian Lenny 5.0 version, last release in January 2010. We have
considered this version of Linux because it has proven stability and good community
support. For installing Nimbus we have used the 2.4 version of this cloud toolkit which is
very different from the 2.3 version and didn't have a well documented administration guide.
As stated on the Nimbus administration discussion list the version 2.5 will have a lot of
improvements which will make the set up process more intuitive.

For the Workspace Control component we have also tried Ubuntu 10.04 but we didn't
manage to install Xen Hypervisor on it, because the xentools software was not longer
maintained by an Ubuntu community developer, therefore it was removed from the
Repository. We tried installing Xen from sources on this operating system — but we didn't
succeed as we didn't have special hardware support for virtualization.

47

Building an interface to access IAAS for BlobSeer

6 Conclusions and future developments

This project has opened a new development field for BlobSeer and brought it closer to
become a viable alternative to its competitors as a storage solution for the Cloud system,
GoogleFS, HDFS and Amazon S3.

BlobSeer is an application that serves as a storage layer when working with very big sets of
data. As described in 3.3.2 BlobSeer's advantages on the Cloud chapter its strong points that
make a potential alternative for other similar application are the versioning system, achieving
high throughput and the data-location-aware feature. The BlobSeer integration in the cloud-
type system allowed us to test its behavior in this type of system and to review its
weaknesses in the Cloud context. One of the BlobSeer's shortcomings was the fact that it
would always loose its data on restart. Because the opportunity to stop and restart an
application without losing the information processed in the Cloud system is very important,
we decided to implement BlobSeer support to solve this lack. The approach on solving this
issue was developing support for incremental checkpoint on BlobSeer for ths Provider,
Metadata Provider and Version Manager. Because we had full control over the Cloud system
we have managed to test and validate our solution in many test scenarios.

One of the important achievements of this project is also having a stable and complete setup
of the Nimbus Cloud, which we can easily extend by adding more servers to play the role of
VMM. On this environment we managed to deploy more virtual machines containing
BlobSeer. We managed this by deploying and using some short scripts that allowed us the
start and stop each of the BlobSeer components and therefore to observe that these
components keep their data after restart. By implementing a system of incremental
checkpoints for the BlobSeer components allows this application to come closer on
becoming a stable software.

Cloud computing storage services is a topic of great interest in the context in which the
Cloud computing model gains more and more followers. By making BlobSeer suitable for
the Cloud model and making it a service for the Cloud we have proven that this application
has great potential which besides achieving high performance is also an application with a
high degree of adaptability.

The first step of porting BlobSeer on the Cloud lead to making BlobSeer more failure-
tolerant and has proven that BlobSeer is a good match for this system. But there are still
some important steps that need to be done before confirming this. One of this steps would be
testing BlobSeer on a bigger cloud, which would allow us to perform some scalability tests.
After performing these performance tests another important part of BlobSeer that has still
place for development is the checkpointing system. Developing a model for making
coordinated snapshots without affecting the BlobSeer's good performance would be another
important step.

After we have tested the BlobSeer on the Cloud we thought to another more effective way to
recover the Providers table of the Provider Manager by using broadcast messages when the
Provider Manager restarts.

48

Building an interface to access IAAS for BlobSeer

7 References

[1] Michael Miller, Cloud Computing Web-Based Applications That Change the Way You
Work and Collaborate Online, Part I — Understanding Cloud Computing

[2] Paul Marshall, Kate Keahey and Tim Freeman “Elastic Site , Using Clouds to Elastically
Extend Site Resources 7, The 10th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, 17 — 20 May 2010

[3] Judith M. Myerson IBM, Cloud computing versus grid computing - Service types,
similarities and differences, and things to consider , 3 May 2009

[4] Bogdan Nicolae, Diana Moise, Gabriel Antonio — University of Rennes, Luc Bouje,
Matthieu Dorier — ENS Cachan, Brittany , “BlobSeer: Bringing High Throughput under
Heavy Concurrency to Hadoop Map-Reduce Applications”, The 24th IEEE International
Parallel and Distributed Processing Symposium, 19-23 April 2010

[5] Katarzyna Keahey, Tim Freeman “Contextualization: Providing One-Click Virtual”
Clusters, 4th IEEE International Conference on e-Science, 11 December 2008

[6] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung — Google, “The Google File
System”, Proceedings of the 19th ACM Symposium on Operating Systems Principles, pp.
20-43, 2003

[7] Katarzyna Keahey — University of Chicago, Mauricio Tsugawa, Andrea Matsunaga, Jose
Fortes — University of Florida “Sky Computing “, IEEE Internet Computing Conference, pp
2-9, September 2009

[8] Cloud Slam 2010, Cloud Computing virtual conference http://cloudslam10.com, 23-25
May 2010

[9] E.N. Elnozahy, L. Alvisi, Y-M. Wang, and D.B. Johnson, "A survey of rollback-recovery
protocols in message-passing systems", ACM Computing Surveys , pp 2-7, September 2002

[10] Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett, Andrew Lumsdaine - Open
Systems Laboratory, Indiana University Parallel; Jason Duell, Paul Hargrove, Eric Roman -
Lawrence Berkeley National Laboratory “Parallel Checkpoint/Restart for MPI
Applications”, pp 1-4 , LACSI Symposium, October 2003

[11] Bogdan Nicolae, Advisor: Gabriel Antoniu, Renne France, Advisor: Luc Bouge
BlobSeer ENS Cachan, Brittany: Efficient Data Management for Data-Intensive Applications
Distributed at Large-Scale , 24th IEEE International Parallel and Distributed Processing
Symposium, 19 — 23 April 2010

[12] HP CEO: The challenges of cloud computing,

http://www.zdnet.com/videos/events/hp-ceo-the-challenges-of-cloud-computing/355087, 21
October 2009

[13] http://aws.amazon.com/ec2/
[14] http://aws.amazon.com/s3/

[15] http://en.wikipedia.org/wiki/GlusterFS

49

Building an interface to access IAAS for BlobSeer

[16] http://en.wikipedia.org/wiki/IBM_General Parallel File System

[17] http://en.wikipedia.org/wiki/Parallel Virtual File System

[18] http://www.globusconsortium.org/tutorial/ch6/page 5.php

[19] http://www.boost.org/

[20] http://www.hyperrealm.com/libconfig/

[21] http://www.oracle.com/technology/documentation/berkeley-db/db/gsg/CXX/index.html
[22] http://en.academic.ru/dic.nsf/enwiki/235617

[23] http://www.nimbusproject.org

[24] http://www.xen.org

[25] http://blobseer.gforge.inria.fr/doku.php

[26] http://hbase.apache.org/

[27] http://hadoop.apache.org/

[28] http://www.nimbusproject.org/docs/2.4/doc/cloud.html#configs

[29] http://www.nimbusproject.org/docs/2.4/admin/quickstart.html#part-I1b
[30] http://wiki.libvirt.org/page/Main_Page

[31] http://www.thoughtpolice.co.uk/vmware/

[32] workspace-user@globus.org

50

Building an interface to access IAAS for BlobSeer

8 Annexe 1 — Installing and Deploying BlobSeer
As a notroot user in we installed all the requirements of the BlobSeer.

On the virtual-machine we have installed we used Debian Lenny (Debian 5.0), minimal
(netinstall) version with 32-bits and 256 MB RAM, downloaded from a website with already
installed vmware machines. [31]

Next we'll see some more detailed description.
root@debian:# cat /proc/meminfo
MemTotal: 256400 kB

root@debian:# cat /proc/cpuinfo

processor : 0

vendor_id : GenuineIntel

cpu family HI)

model name : Intel(R) Celeron(R) CPU 530 @ 1.73GHz
stepping 1

cpu MHz : 1699.200

cache size : 1024 KB

root@debian:# df -1lh
Filesystem Size Used Avail Use% Mounted on

/dev/sdal 7.56 1.7G 5.5G 24% /
Notes: There are two accounts: "root" and "notroot". Password for both is "thoughtpolice".
To complete the setup we have followed the following steps on the machine described above.

(a) Setting environment
notroot@debian:$ cd ~
notroot@debian:$ pwd

/home/notroot

We added in ~/.profile the following variables to be loaded on each login:
export HOME_BLOB=$HOME/blobseer/

export JAVA HOME=/usr/lib/jvm/java-6-sun/

export HOME BLOB=$HOME/blobseer/

export LD LIBRARY PATH=$HOME BLOB/deploy/lib/

export BLOBSEER HOME=$HOME BLOB/downloads/release-0.3.3/

export CLASSPATH=$JAVA_HOME/bin/

51

mailto:root@debian
mailto:notroot@debian
mailto:notroot@debian
mailto:root@debian
mailto:root@debian

Building an interface to access IAAS for BlobSeer

We downloaded all the required tool for Blobseer in $HOME BLOB/downloads/ and
installed them in $HOME BLOB/deploy/, so this tutorial can be started by creating this
folders.

(b) Boost - a collection of free peer-reviewed portable C++ source libraries (Boost 0.37
and above). We used the wversion 142 0. You <can go to
http://sourceforge.net/projects/boost to check for the latest stable version and
downloaded it. Afterwards we can run the following commands:

notroot@debian:$ cd $HOME_BLOB/downloads/

notroot@debian: $wget
http://sourceforge.net/projects/boost/files/boost/1.42.0/boost 1 42 0.tar.gz/download

notroot@debian:$ tar -xzvf boost_1 42 0.tar.gz
notroot@debian:$ cd $HOME_BLOB/downloads/boost_1 42 0/

notroot@debian:$./bootstrap.sh --prefix=$HOME_BLOB/deploy --with-
libraries=system,thread,serialization,filesystem,date _time -libdir=$HOME_BLOB/deploy/lib

notroot@debian:$./bjam

notroot@debian:$./bjam install

(c) Libconfig - a simple library for manipulating structured configuration files for C/C+
+. We downloaded the library from the following site:

notroot@debian:$ wget http:

notroot@debian:$ cd $HOME_ BLOB/downloads/libconfig-1.4.3/

notroot@debian:$./configure --prefix=$HOME_BLOB/deploy && make && make install

(d) Berkley DB - Oracle Berkeley DB is the industry-leading open source, embeddable
storage engine that provides developers a fast, reliable, local database with zero
administration. To download it we can go to the next link and get the latest stable

release http://www.oracle.com/technology/software/products/berkeley-db/index.html

We have downloaded and installed the version 4.8.26 with the following commands. This
installation might take a while.

notroot@debian:$ cd $HOME_ BLOB/download/sdb-4.8.26

notroot@debian:$ cd build unix

notroot@debian:$../dist/configure --prefix=$HOME BLOB/deploy --enable-cxx
notroot@debian:$ make

notroot@debian:$ make install

(e) Other necessary tools. Beyond these requirements that are specified on the
BlobSeer website to we had to install the followings:

Javaé6, using the steps from this toturial describing how to install Java6 on debian
5.0.

52

mailto:notroot@debian
mailto:notroot@debian
mailto:notroot@debian
mailto:notroot@debian
mailto:notroot@debian
mailto:notroot@debian
mailto:notroot@debian
mailto:notroot@debian
mailto:notroot@debian
mailto:notroot@debian
mailto:notroot@debian
mailto:notroot@debian
mailto:notroot@debian
mailto:notroot@debian
mailto:notroot@debian

Building an interface to access IAAS for BlobSeer

Subversion, from the repository with the command

notroot@debian:$ apt-get install subversion

CMake tool which will be used to build BlobSeer. We have installed it from the
repository with

notroot@debian:$ apt-get install cmake

(f) BlobSeer — download the latest version directly from the repository with the
command

svn checkout svn://scm.gforge.inria.fr/svn/blobseer/tags/release-**Vx*
To check the latest stable release go to Blobseer Svn .

BlobSeer is built using CMake — so this needs to be installed now if not done on the
previous stage. Also before continue with compiling the EXTERNAL_ROOT environment
variable needs to be set in the root prefix of dependencies section to this path. In the current
setup example to set this variable we need to edit the CMakeLists.txt file (the tol-level
configuration file) with the following commands:

notroot@debian:$ cd $HOME BLOB/download/release-0.3.3/

edit CMakeLists.txt in order to set

EXTERNAL ROOT= /home/notroot/blobseer/deploy/

Worth mentioning that are some preprocessor definitions used by BlobSeer. These
definitions can be changed by editing the corresponding section in the configuration file. The
user can control verbosity by defining -D___INFO for additional runtime information, as well
as the socket type used for remote communications: -DSOCK_TYPE=tcp or
-DSOCK_TYPE=udp. In this case we didn't edit any of these options. Afterwards we can
proceed to the next step generating the make files, using a certain generator. In the current
case we have used Unix makefiles. Once all Makefiles are build, we can proceed to build
BlobSeer:

notroot@debian:$ cmake -G "Unix Makefiles"

notroot@debian:$ make

(g) If any errors happened during the built process a fully functional setup should be
available. The next stage it's the deployment. BlobSeer is designed to be used in a
large scale environment. A common deployment is performed in a local cluster,
however, for a test environment the local machine is more than enough. This is why
in the next example we will provide a local deployment example as this implies
running all components of BlobSeer on localhost. In order to be able to create a blob
and be able to write to it we need to start at very minimum a version manager, a
provider manager, a provider and a dht service provider. Each of them reads a
configuration file supplied as first parameter.

For this first test we can use from the BlobSeer sources downloaded from the SVN the file
scripts/local-deploy.sh. You can run this script with the first parameter containing the
configuration for each of the four entities. Normally there should be there an example of this

53

mailto:notroot@debian
mailto:notroot@debian
mailto:notroot@debian
mailto:notroot@debian
mailto:notroot@debian

Building an interface to access IAAS for BlobSeer

file named blobseer-template.cfg. We have used the next configuration file in my setup:
notroot@debian:$cat blobseer-template.cfg
Version manager configuration
vmanager: {
The host name of the version manager
host = ${vmanager};
The name of the service (tcp port number) to listen to
service = "2222";
}i
Provider manager configuration
pmanager: {
host = ${pmanager};
service = "1111";
}i
Provider configuration
provider: {
service = "1235";
Maximal number of pages to be cached
cacheslots = 1024;
Update rate: when reaching this number of updates report to provider manager
urate = 100;
dbname = "/tmp/blobseer/provider/db/provider.db";
#dbname = "";
Total space available to store pages, in MB (1GB here)
space = 65536;
How often (in secs) to sync stored pages
sync = 10;
}i
Built in DHT service configuration
sdht: {
Maximal number of hash values to be cached
cacheslots = 100;
No persistency: just store in RAM

dbname = "";

54

mailto:notroot@debian

Building an interface to access IAAS for BlobSeer

Total space available to store hash values, in MB (128MB here)
space = 32;
How often (in secs) to sync stored hash values
sync = 10;
}i
Client side DHT access interface configuration
dht: {

The service name of the DHT service (currently tcp port number the provider listens
to)

service = "1234";
List of machines running the builtin dht (sdht)
gateways = (
${gateways}
)i
How many replicas to store for each metadata entry
replication = 1;
How many seconds to wait for response
timeout = 10;
How big the client's cache for dht entries is
cachesize = 1048576;
}i

This script uses blobseer-deploy.py in order to launch an entire environment with the
minimum requirements specified above.

In order to make this script work fine we need to assure that the notroot user is able to login
to localhost again without any password. For this we need to create private/public key pair
and add the public key to ~/.ssh/authorized keys.

You can use the next steps using ssh-keygen.

1. If not already installed openssh-server run:

notroot@debian:$ apt-get install openssh-server

2. Then create a pair of private/public keys with the command:
notroot@debian:$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/notroot/.ssh/id rsa):

/home/notroot/.ssh/id_rsa already exists.

55

mailto:notroot@debian
mailto:notroot@debian

Building an interface to access IAAS for BlobSeer

Overwrite (y/n)? y

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/notroot/.ssh/id rsa.
Your public key has been saved in /home/notroot/.ssh/id_rsa.pub.
The key fingerprint is:

ca:15:46:a9:57:5c:89:87:87:dc:e6:40:df:2e:06:19 notroot@debian

3. Then add the public key to authorized keys with:

notroot@debian:$ cat ~/.ssh/id _rsa.pub > ~/.ssh/authorized keys

4. 1If still having problems running the ./local_deploy.sh we should make sure that
the variable SBLOBSEER HOME is set up to the root where there is the
downloaded BlobSeer from the SVN. To check this we can run one of the
following commands:

notroot@debian:$ export //Shows all the exported variables

notroot@debian:$ echo $BLOBSEER_HOME // shows only the value of this variable in the
system.

If not set we can set it with the command (this command sets this variable only for the
current login session to make this permanent add the command to ~/.profile which is read at
every login.

export BLOBSEER HOME=$HOME_ BLOB/downloads/release-0.3.3

(h) After running ./local-deploy.sh blobseer-template.cfg successfully (we should
receive the message “All done!” In the console. To check that the version manager,
the provider manager, the provider and the dht service provider were started we can
run the command netstat and receive the following output.

notroot@debian:$ ~/blobseer/downloads/release-0.3.3/scripts$ netstat -tlpn

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

tcp 0 0 0.0.0.0:2222 0.0.0.0:%* LISTEN 2071/vmanager
tcp 0 0 0.0.0.0:1234 0.0.0.0:%* LISTEN 2092/sdht

tcp 0 0 0.0.0.0:1235 0.0.0.0:%* LISTEN 2089/provider
tcp 0 0 0.0.0.0:1111 0.0.0.0:%* LISTEN 2079/pmanager

To stop BlobSeer we can run the script from the scripts folder ./1ocal-ki11.sh and
when we run the netstat command again the out above should not appear any more.

Back to deployment (if we stop BlobSeer we should start it again). When the start
command is done there are some files created in /tmp like in the next output. There we can
observe that each entity has it's own log file and the provider has a db with all the blobs and
their version. Also directly into the /tmp folder it was generated the file blobseer.cfg which

56

mailto:notroot@debian
mailto:notroot@debian
mailto:notroot@debian
mailto:notroot@debian
mailto:notroot@debian

Building an interface to access IAAS for BlobSeer

we will use in order to create blobs and read and write to them.
notroot@debian:$./local-deploy.sh blobseer-deploy.cfg
All done!

notroot@debian:$ cd /tmp

notroot@debian:$ tree

— blobseer

| |— pmanager

| | |— pmanager.stderr

| | '— pmanager.stdout

| | provider

| |

| | | } _dv.o01

| | | B _dv.o002

| | | | _db.oo3

| | | | _dv.o04

| | | — provider.db
| | |— provider.stderr
| | L— provider.stdout
| | sant

| | |— sdnt.stderr

| | L— sdht.stdout

| L— vmanager

| — vmanager.stderr
| L— vmanager.stdout

L blobseer.cfg

(1) Create first BLOB. In order to create a BLOB we need to run the command
create_blob from the test folder being SBLOBSEER HOME.

notroot@debian:$ pwd
notroot@debian:$ /home/notroot/blobseer/downloads/release-0.3.3/test
notroot@debian:$./create blob

Usage: create blob <config file> <page size> <replica count>. To be wused in empty
deployment to generate ID 1.

notroot@debian:$./create blob /tmp/blobseer.cfg 8 1

Blob created successfully.

57

mailto:notroot@debian
mailto:notroot@debian
mailto:notroot@debian
mailto:notroot@debian
mailto:notroot@debian
mailto:notroot@debian
mailto:notroot@debian

Building an interface to access IAAS for BlobSeer

End of test

(j) Write/Read from a BLOB. After creating a BLOB first thing we need to do is
write to it and then we can append data to it and read from it. This can be done with
the following commands

notroot@debian:$ pwd
notroot@debian:$ /home/notroot/blobseer/downloads/release-0.3.3/test
notroot@debian:$./test W 1 /tmp/blobseer.cfg

notroot@debian:$./test R 1 /tmp/blobseer.cfg

(k) Problems encountered with standard deplyment for this setup. By default in the
deployment from BlobSeer website the page size goes to 256 RAM. My setup was
on machines that had only 256 MB memory RAM. The solution to this was to resize
the page dimension to 8KB. To do this we modified in test.cpp the following lines:

const uint64_t PAGE_SIZE = 1 << 3; // 8KB instead of 64 KB

const uint64_t START_SIZE = 1 << 3; // 8KB instead of 1 MB
const uint64_ t STOP_SIZE = 1 << 16; // 16MB instead of 256 MB

and appender.cpp where we modified the following line:

onst boost::uint64_t PAGE_SIZE = 1 << 3;

we built the Blobseer again like in the step (f) and run the command from (i) and (j)
successfully.

Another problem which we have encountered was running the script ./local-kill.py .
The problem was caused by the fact that in debian the command killall is not istalled by
default. We e replaced the “killall” with “pkill” in the file blobseer-deploy.py and everything
went well with this command also.

58

mailto:notroot@debian
mailto:notroot@debian
mailto:notroot@debian
mailto:notroot@debian

Building an interface to access IAAS for BlobSeer

9 Annexe 2 — Incremental checkpoints on BlobSeer.

9.1 Checkpoints for Provider and Metadata Provider

The Provider and Metadata Provider use the template <bdb bw_ map> when running the
processes for these two components as seen in the next code sample from the main routine.

if (db_name != "")
run_server<bdb_bw map>();
else

run_server<null bw_map>();

In this template the save operation is done in the method sync_handler at certain time
intervals after the write operation was finished.

void bdb_bw_map::sync_handler() {
boost::xtime xt;

buffer_ wrapper key, value;

for (;;) {
// now start the DB sync; make this operation uninterruptible
boost::this_thread::disable_ interruption di;
while (1) {
{
scoped lock lock(write_ queue_ lock);
if (write_queue.empty()) {
break;
}
key = write_queue.front().first;
value = write_queue.front().second;
write queue.pop_ front();
}
Dbt db_key(key.get(), key.size());

Dbt db_value(value.get(), value.size());

try {
db->put (NULL, &db_key, &db_value, 0);
} catch (DbException &e) {

ERROR("failed to put page in the DB, error is: " <<

59

Building an interface to access IAAS for BlobSeer

e.what());

}
try {
db->sync(0);
} catch (DbException &e) {
ERROR("sync triggered, but failed: " << e.what());
}}

We added the functionality of restoring the data from the database back into the RAM
memory using the Berkley DB API for reading data from the database. After reading this
data we serialize it and put it load it back into cache.

int bdb_bw map::restore_records (Db &providerDB) {

Dbc *cursorp;

ofstream data_show;

// temporary file, used only for testing reasons

data_show.open("show RESTORED data", ios::app);

try {

providerDB.cursor (NULL, &cursorp, 0);

Dbt key, data;
buffer wrapper *key buf, *value buf;

int ret;

// Iterate over the inventory database, from the first record
// to the last, displaying each in turn
while ((ret = cursorp->get(&key, &data, DB_NEXT)) == 0) {

// the buffers where each key is loaded

key buf = new buffer wrapper[l];

value buf = new buffer wrapper[1];

key buf[0] = buffer wrapper((char *) (key.get data()),
key.get_size());

value buf[0] = buffer wrapper((char *)
(data.get_data()),data.get_size());

60

Building an interface to access IAAS for BlobSeer

// saving the read data — only for testing reasons

data_show<<"cheie: "<<key buf[0]<<endl<<"data:"<<value buf[0]<<

endl;
buffer_wrapper_cache—>write(key_buf[0], value buf[0]);
}
} catch (DbException &e) {
providerDB.err(e.get_errno(), "Error in restore_records");
cursorp->close();
throw e;
} catch (std::exception &e) {
ERROR("other error while accessing db");
cursorp->close();
throw e;
}
data_show.close();
cursorp->close();
return (0);
}

This restore method is called into the bdb_bw_map constructor before performing any
operation with:

bdb_bw_map::bdb_bw map(const std::string &db_name, boost::uint64_t cache_size,
boost::uint64_t m, unsigned int to)

[..]
bdb_bw_map::restore_records(*db);

[.]
9.2 Checkpoints for Version Manager

Storing incremental checkpoints on the Version Manager implies storing the following
information for each created BLOB <id , page size, replica count >. Because the amount of
information is small, only three integers per BLOB, we decided to use files to store this
information.

The storing operation is done in the method that deals with creating each node from the class
vmanagement:

rpcreturn_t vmanagement::create(const rpcvector_t ¶ms, rpcvector t &result,

const std::string &sender) {

61

Building an interface to access IAAS for BlobSeer

ofstream obj_count_file;

obj_count_ file.open("obj count.txt", ios::app);
[..]

unsigned int id = ++obj_count;

buffer wrapper *my_ obj;

my_obj = new buffer wrapper([l];

//id, page_size, replica_ count

obj_info new_obj(id, ps, rc);

// insert the pairs into the RAM memory

std::pair<unsigned int, obj_info> to_insert_obj(id, new_obj);

obj hash.insert(to_insert_obj);

result.push back(buffer wrapper(new_obj.roots.back(), true));

// store the pair <id, page size, replica count> into a file on the disk
obj _count_file << id << " " << ps << " " << rc << endl;}

// close the file

obj count_file.close();

return rpcstatus::ok;

}
The restoring operation is done in the Version Manager constructor by reading each pair
data of the previously created BLOB and loading it into the RAM memory.
vmanagement: :vmanagement () :
read_count() {
ifstream obj count file;
int count = 0;
unsigned int id;
boost::uint64_t ps;

boost::uint32 t rc;

obj_count_file.open("obj count.txt");
// if this file exists we can restore the created BLOBs
if (obj_count file.good()) {
while (!obj count file.eof()) {
// reading the pair <id, page size, replica_ count>
obj_count_file >> id >> ps >> rc;
// loading this data into RAM
obj_info new_obj(id, ps, rc);

std::pair<unsigned int, obj_info> to_insert_obj(id,
new_obj);

obj hash.insert(to_insert_obj);

62

Building an interface to access IAAS for BlobSeer

// increment object number

obj_count++;

}

// if not the default BLOB has the id equal to zero
else {

obj_count = 0;

63

Building an interface to access IAAS for BlobSeer

10 Annexe 3 — Scripts for Command Line Interface for BlobSeer

10.1 Interface for deploying the Nimbus Cloud
In this section we will present the content of the script which starts our cloud.

start_cloud.sh:

#!/bin/bash

NO_ARGS=0

E_OPTERROR=85

if [$# -eq "SNO_ARGS"] # Script invoked with no command-line args?
then

echo "Usage: “basename $0° options -u <username> -r <repo_hostname> -s
<worskspace_service hostname> -c <workspace control hostname> -e <end user_hostname>"

exit $E_OPTERROR

fi

while getopts "u:r:s:c:e" Option
do case $Option in

u) user=$OPTARG; ;

r) repo=$OPTARG; ;

s) service=$0PTARG; ;
c) control=$0OPTARG; ;
e) enduser=$0PTARG; ;
esac

done

echo "the arguments are user = $user, repo = $repo, service=$service, control=$control,
enduser=$enduser"

#start authentification process
ssh $user@$repo '$GLOBUS_LOCATION/bin/grid-proxy-init'’

if [$? -ne 0]

echo "error when starting the authentication process on repository node"
exit 0
fi
#start GridFTP server
ssh $user@$repo '$GLOBUS_LOCATION/sbin/globus-gridftp-server &'
if [$? -ne 0]
echo "error when starting GridFTP server on repository node"
exit 0

fi

64

Building an interface to access IAAS for BlobSeer

on workspace-service -> kerun3
start the authentication process
ssh $user@$service '$GLOBUS_LOCATION/bin/grid-proxy-init -hours 240’
if [$? -ne 0]
echo "error when starting authentification process on workspace service node"
exit 0
fi
start all the workspace-service servicies
ssh $user@$service '$GLOBUS_LOCATION/bin/globus-start-container -debug’
if [$? -ne 0]
echo "error when starting services on wrospace service"
exit 0
fi
on vmm -> kerunl
start xen-network bridge
ssh Suser@$control 'sudo /etc/xen/scripts/network-bridge start'
if [$? -ne 0]
echo "error when starting authentification process on workspace service node"
exit 0
fi
restart DHCP server
ssh $user@$control 'sudo /etc/init.d/dhcp3-server restart'
if [$? -ne 0]
echo "error when restarting dhcp server"
exit 0
fi
on client -> elfe
initiate the authentification process
$GLOBUS_LOCATION/bin/cloud-client.sh --run --name part2 -hours 240
#start five virtual machines with BlobSeer on the IaaS Cloud
ssh Suser@S$enduser $GLOBUS_LOCATION/bin/cloud—client.sh —-run --name 202 -hours 240 &
if [$? -ne 0]
echo "error starting vm 202"
exit 0
fi
ssh $user@$enduser $GLOBUS_LOCATION/bin/cloud-client.sh --run --name 203 -hours 240 &
if [$? -ne 0]
echo "error starting vm 203"
exit 0

fi

65

Building an interface to access IAAS for BlobSeer

ssh Suser@S$enduser $GLOBUS_LOCATION/bin/cloud—client.sh ——-run --name 204 -hours 240 &
if [$? -ne 0]

echo "error starting vm 204"

exit 0
fi
ssh $user@$enduser $GLOBUS_LOCATION/bin/cloud-client.sh --run --name 205 -hours 240 &
if [$? -ne 0]

echo "error starting vm 205"

exit 0
fi
ssh $user@$enduser $GLOBUS_LOCATION/bin/cloud-client.sh --run --name 206 -hours 240 &
if [$? -ne 0]

echo "error starting vm 206"

exit 0
fi

echo "All done!"

10.2 Interface for deploying BlobSeer as a service on the IaaS Nimbus Cloud

In order to deploy and kill BlobSeer with all its instances we have used the following scripts.
For starting/stopping single components of BlobSeer on the Cloud we have used similar
scripts with the only difference that we have used blobseer-deploy.py script with different
arguments.

./bl_cloud_deploy.sh echo "192.168.122.12" > $P
#!/bin/bash

echo "192.168.122.13" >> $P

VM=/tmp/deploy_blobseer/vm echo "192.168.122.14" >> $P
PM=/tmp/deploy_blobseer/pm echo "192.168.122.15" > $MP
P=/tmp/deploy_blobseer/p echo "192.168.122.16" >> $MP

MP=/tmp/deploy_blobseer/mp
./blobseer-deploy.py --vmgr="cat $VM~ --pmgr="cat $PM"
--dht=$MP --providers=$P ——launch:STEMPLATE_FILE
TEMPLATE_FILE=$BLOBSEER HOME/scripts/blobseer-template.cfg
rm -rf /tmp/deploy_blobseer/*

echo "192.168.122.12" > $VM

./bl_cloud_kill.sh
echo "192.168.122.12" > $PM
#!/bin/bash

66

Building an interface to access IAAS for BlobSeer

return hosts

VM=/tmp/deploy_blobseer/vm def get_env(name):
if name in sys_vars:
PM=/tmp/deploy_blobseer/pm return sys_vars[name]
try:
P=/tmp/deploy_blobseer/p sys_vars[name] = os.environ[name]
except KeyError:

MP=/tmp/deploy_blobseer/mp print "WARNING: environment variable " + name + "
is not set"

sys_vars[name] = "."

return sys_vars[name]
echo "192.168.122.12" > $VM

def gen_launch(path, process):
echo "192.168.122.12" > $PM
out = "/tmp/blobseer/" + process

return "\"rm -rf " + out + "; " + \
echo "192.168.122.12" > $P
"mkdir -p " + out + "; " + \

"env CLASSPATH=" + get_env("CLASSPATH") + " " + \
echo "192.168.122.13" >> $P
"LD_LIBRARY_PATH=" + get_env("LD_LIBRARY_PATH") + "

LR AN
echo "192.168.122.14" >> $P get_env("BLOBSEER_HOME") + "/" + path + "/" +
process + " " + \
REMOTE_CFG_FILE + " >" + out + "/" + process +
echo "192.168.122.15" > $MP ".stdout 2>" + out + "/" + process + ".stderr&\""
echo "192.168.122.16" >> $MP def gen _kill(path, process):
return "\"pkill " + process + " || echo could not kill

" + process + "\""
$BLOBSEER_HOME/scripts/blobseer-deploy.py --vmgr="cat $VM"
--pmgr="cat $PM" --dht=$MP --providers=$P --kill def gen_status(path, process):
return "\"ps aux | grep " + path + "/" + process + "

grep -v grep | we -1 | grep 1 >/dev/null || echo no " +
process + " running\""

rm -rf /tmp/deploy_blobseer/*

class RemoteCopy(threading.Thread):

def _ init (self, n, src, dest):

./blobseer-deploy.py threading.Thread.__init__ (self)
#!/usr/bin/env python self.node = n
self.cmd = SCP + " " + src + " " + self.node + ":"

+ dest + " &>/dev/null"
REMOTE_CFG_FILE="/tmp/blobseer.cfg"

def run(self):

p = subprocess.Popen(self.cmd, shell=True)
def usage():
if p.wait() != 0:
print "%s [-v, --vmgr <hostname>] [-m, --pmgr
<hostname>] [-d, --dht <dht.txt>] [-p, --providers print "[%s]: could not copy configuration file"
<providers.txt>] [[-1, --launch] | [-k, --kill] | [-s, 3 self.node
--status]]\n" % sys.argv[0]

class RemoteLauncher (threading.Thread):
def read hosts(file_name):
def _ init_ (self, n, cmd):
f = open(file name, "r")
threading.Thread.__init__ (self)
hosts = map(lambda x: x.strip(), filter(lambda x: x !=
"\n", f.readlines())) self.node = n

f.close() self.cmd = SSH + " " + self.node + " " + cmd

67

Building an interface to access IAAS for BlobSeer

def run(self):

p = subprocess.Popen(self.cmd,
stdout=subprocess.PIPE,

shell=True,
stderr=subprocess.PIPE)

(cout, cerr) = p.communicate()

if cout.strip() != ""

print "[%s]: %s" % (self.node, cout.strip())

(opts, args) = getopt.getopt(sys.argv[l:], "v:m:p:d:l:ks",
["vmgr=", "pmgr=", "providers=", "dht=", "launch=", "kill"
"status"])
gencmd = gen_status
for (o, a) in opts:
if o in ("-h", "--help"):
usage()
sys.exit(2)
elif o in ("-v", "--vmgr"):
vmgr = a
elif o in ("-m", "--pmgr"):
pmgr = a
elif o in ("-p", "--providers"):
providers = read_hosts(a)
elif o in ("-d", "--dht"):
dht = read_hosts(a)
elif o in ("-1", "--launch"):
gencmd = gen_launch
f = open(a, "r")
template = f.readlines()
f.close()
elif o in ("-k", "--kill"):
gencmd = gen_kill
elif o in ("-s", "--status"):
pass
if vmgr == "" or pmgr == "" or providers == [] or dht ==
[1:
usage()

sys.exit(1)

If needed, copy all configuration files to the remote
nodes

if (gencmd == gen_launch):

gateways "\"" o+ x4+

"\"", dht))

",\n\t\t".join(map(lambda x:

f = open(TMP_CFG_FILE, "w")
f.writelines(map(lambda x: x.replace("${gateways}",
gateways) .
replace("${vmanager}", "\"" + vmgr +
)
replace("${pmanager}", "\"" + pmgr +
"\""), template))

’

f.close()

cfgs
set (dht)

set([vmgr]) | set([pmgr]) | set(providers) |

for x in cfgs:

workers.append(RemoteCopy(x, TMP_CFG_FILE,
REMOTE_CFG_FILE))

for w in workers:

w.start()

for w in workers:
w.join()

workers.append (RemoteLauncher (vmgr, gencmd("vmanager",
"vmanager")))

workers.append (RemoteLauncher (pmgr, gencmd("pmanager",
"pmanager")))

for p in providers:

workers.append (RemoteLauncher (p, gencmd("provider",
"provider")))

for d in dht:

workers.append (RemoteLauncher(d, gencmd("provider",
"sdht")))

for w in workers:

w.start()

for w in workers:

w.Jjoin()

print "All done!"

68

	 1 Project objectives
	 2 Introduction and motivation
	 3 Background
	 3.1 Cloud computing overview
	 3.1.1 Cloud computing in the context of distributed systems
	 3.1.2 Understanding cloud services
	 3.1.3 Cloud storage

	 3.2 Nimbus
	 3.2.1 Overview
	 3.2.2 Nimbus Architecture

	 3.3 BlobSeer
	 3.3.1 BlobSeer Overview
	 3.3.2 BlobSeer's advantages on the Cloud
	 3.3.3 Developing on BlobSeer

	 3.4 Virtualization Technologies
	 3.4.1 Xen hypervisor
	 3.4.2 Libvirt

	 3.5 Checkpoint-Restart Approaches

	 4 Our contribution
	 4.1 BlobSeer on the Cloud – Setup Description
	 4.1.1 Nimbus Deployment
	 4.1.1.1 The Client
	 4.1.1.2 The Workspace-Service
	 4.1.1.3 The Repository
	 4.1.1.4 The VMMs

	 4.1.2 Virtualization Solution – Xen Setup
	 4.1.3 BlobSeer Setup

	 4.2 BlobSeer checkpoint-restart inside Nimbus Cloud
	 4.2.1 Existing approach on checkpoint restart in BlobSeer
	 4.2.2 Our approach on checkpoint restart in BlobSeer
	 4.2.3 Solution implementation

	 4.3 Command Line interface for controlling BlobSeer in the Cloud
	 4.4 Tests
	 4.4.1 First Scenario: Deploying the first machine on the Cloud
	 4.4.2 Second Scenario: Starting more components of BlobSeer on the Cloud
	 4.4.3 Third Scenario: Test Checkpointing for Provider/Metadata Provider
	 4.4.4 Fourth Scenario: Test Checkpointing for Version Manager
	 4.4.5 Fifth Scenario: Test Checkpointing for Provider Manager

	 5 Resources
	 5.1 Hardware
	 5.2 Software

	 6 Conclusions and future developments
	 7 References
	 8 Annexe 1 – Installing and Deploying BlobSeer
	 9 Annexe 2 – Incremental checkpoints on BlobSeer.
	 9.1 Checkpoints for Provider and Metadata Provider
	 9.2 Checkpoints for Version Manager

	 10 Annexe 3 – Scripts for Command Line Interface for BlobSeer
	 10.1 Interface for deploying the Nimbus Cloud
	 10.2 Interface for deploying BlobSeer as a service on the IaaS Nimbus Cloud

