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Abstract 

Adaptive Data replication for data storage systems and distributed computing represents an 
important  element  for  autonomic  behavior.  It  improves  their  overall  performance  when 
offering services such as IaaS on a cloud as it minimizes the storage resources used on large-
scale  distributed systems.  Moreover,  it  increases  the  availability  of  highly accessed data. 
Depending on the type of changes that occur (e.g.,  modifications of the load, the type of  
workload, the available resources, etc.), different adjustments have to be made. We describe a 
technique to enable adaptive data replication within the BlobSeer distributed storage system. 
We discuss the system’s architecture,  present the replication algorithms that we rely on, and 
evaluate our tool within a distributed testing environment. The intended implementation is for 
C++.

Keywords – adaptive data replication, BlobSeer, MonALISA, storage, autonomic behavior, 
replication factor.
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1. Introduction
Distributed computing as well as clouds gain popularity for the services they offer. Most of them are  
used for their data processing power as well as storage facilities. Raw and processed data is stored on 
them for analysis and further processing. That is why data availability on such systems is essential for 
their  overall  functionality.  Because  of  the  nature  of  files  that  are  increasing  in  size,  it  is  often 
impossible to store a whole file on a single disk. Therefore, files have to be split in chunks that are  
distributed among data storage servers on networks. 
If there happens to be a problem with a storage disk, then multiple files are affected. This problem can 
be solved by creating many copies of the chunks on other storage disks. The easiest way is to specify  
manually the number of desired copies for each file. In this situation, because the number of copies is 
specified manually at the file’s creation, no further adjustments can be made. This proves to be a  
waste of space and ultimately a waste of money because disks cost and services’ price depends on 
how much  of  storage  resources  are  used.  Thus,  data  storage  systems  and  distributed  computing 
networks have to be equipped with an adaptive data replication module. The adaptive data replication 
module is that part of a storage system that handles the replication problems and is able to maintain  
and adjust the replication factor for files they host in order to increase the reliability of the entire  
system. A good approach to implement such an adaptive data replication module is by accomplishing 
the services on the background, so that the end-user does not notice that there is any kind of problem 
with  the  storage  disks.  The  difficulty  of  creating  such  a  module  consists  in  monitoring  storage 
providers and the problems that may arise that can have different sources (networking issues, disk 
problems, uneven load on the storage disks, etc). All the causes are treated and decisions have to be  
made on how to deal with the chunks affected by the storage disks were problems were reported.

Data storage services such as BlobSeer[1] need an adaptive data replication module to handle the 
reliability  issue.  It  is  crucial  that  storage  systems automatically  adapt  to  changes  that  occur  and 
provide a reliable access to content. The replication module, listens to the changes, evaluates what  
data  chunks are  more accessed by reads and writes and makes decisions  of whether  to increase, 
decrease or maintain the replication factor of a file. 
Currently, BlobSeer is only able to create a fixed number of replicas on files’ creation. However, the 
number of replicas is not maintained, nor increased or decreased based on  real-time statistics for  
files’ use. Therefore, a module to overcome these limitations was created. Our module is implemented 
for BlobSeer (§3.1) data storage service. The module helps BlobSeer adjust its replication scheme for  
each blob individually based on data collected from monitoring services such as MonALISA(§3.2).  
The fact that each file’s replication factor is automatically adjusted implies lower costs for storage  
services on the cloud where the price depends on how much of resources are used.
In this paper we introduce the notion of adaptive data replication, which enables data storage services 
adapt  automatically  the  replication  scheme  for  the  stored  files.  We  describe  various  replication 
algorithms and emphasize the main advantages that our module adds to BlobSeer.

1.1 Thesis Objectives

The main purpose of this paper is to present the design and the implementation of an adaptive data 
replication module that makes the transition from static to dynamic replication. This module is part of  
a bigger project called BlobSeer which aims to provide a data storage service designed to deal with 
the requirements of large-scale data-intensive distributed applications.
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In the current implementation of BlobSeer, the replication factor for each file is specified at the file’s  
creation and remains unchanged through the file’s lifetime. Even worse, if a storage provider that 
holds parts of that file fails, there is no mechanism to prevent that or to try to maintain that file’s  
replication factor.

With  the  Replication  Module,  we  have  added to  BlobSeer  features  that  eliminate  these  deficits. 
Moreover, we added the support to automatically increase and decrease the replication factor for files  
depending on various parameters. The Replication Module enables BlobSeer to continue operating 
properly  and  offering  access  to  data  in  the  event  of  failure  of  one  or  many  of  its  data  storage  
providers. 

Our goal was to create a Replication Module that solves the above-mentioned problems and integrates  
in an optimal way with BlobSeer.

First, there have been many challenges such as how to maintain the replication factor for the stored 
files and then, how to make decisions when to increase or decrease their replication factor. Since the 
beginning of the project, our goal was to create a module that operates fast whenever action needs to  
be taken and solves the issues in as less time as possible.

Second, we tried to achieve this by exchanging a minimum number of messages with BlobSeer. The 
Replication Module has to deal with data providers in those critical moments when they fail, become 
available  or  periodically  update  with information  containing the  written pages.  Because  speed is 
crucial to BlobSeer, a large number of exchanged messages would slow down the performance of the 
Replication Module. That is why we designed the module to communicate with BlobSeer exchanging 
messages only when needed.

Above all, the overhead that this module brings to the system needs to be reduced. The Replication  
Module computes locally the topology of BlobSeer based on the messages it receives from it. The  
availability of a  local topology of providers with the pages they store brings advantages of reduced 
overhead as well as speed increase because all the necessarily information is already there. All the 
information that is locally stored is designed to be as compact as possible to save time on searches.  
With these in mind, we have started to design and implement the Replication Module for BlobSeer.

Finally,  the  project  was  divided  in  two  important  milestones.  The  first  milestone  consisted  in 
maintaining the replication factor for stored files in case data storage providers become unavailable.  
We made the assumption that data storage providers failure, are the norm rather than the exception. 
This milestone has made BlobSeer fault-tolerant in the event  of failure of storage providers. The  
second  milestone  brings  BlobSeer  the  advantage  of  automatically  increasing  and  decreasing  the 
replication factor for the files it  stores. With the help of monitoring services such as MonALISA 
Service and MonALISA Repository, we have managed to collect data regarding the use of blobs in 
terms of reads and writes. We have used these monitored data to compute metrics that allowed us to  
make replication factor decisions. Moreover, the Replication Module collects monitored data from 
MonALISA Repository regarding the load on storage providers. This brings us a double advantage: it  
is able to prevent a provider failure by creating in time copies of the data chunks it contains and it can  
decrease the load on the providers in case.
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1.2 Thesis Outline

The reminder of this thesis is organized as follows:
Chapter 2 presents a survey of the current research efforts that deal with fault-tolerance and data 
replication  problems.  It  includes  several  algorithms  and  the  description  of  two  file  systems  that  
already provide such mechanisms. For each algorithm and file system presented we included a short 
comparison  against  BlobSeer  to  show the  advantages  and disadvantages  such  an  implementation 
would have on our data storage service.
Chapter 3 provides background information for BlobSeer, the data storage service that our replication 
module  will  be  implemented  for.  The  monitoring  services  that  our  module  uses  are  handled  by  
MonALISA. This chapter introduces basic information about how BlobSeer works, and describes the 
parts  of  MonALISA  that  are  useful  to  our  implementation,  namely  MonALISA  Service  and 
MonALISA Repository.
Chapter 4 presents the replication module’s architecture. The concepts of Listener and Replication 
Manager are introduced as well as detailed information about maintaining, increasing and decreasing 
the  replication  factor.  Moreover,  this  chapter  presents  the  interactions  between  the  Replication 
Module and BlobSeer components.
Chapter  5  outlines  illustrations  for  various  functionalities  that  the  Replication  Module  brings  to 
BlobSeer. There are scenarios for maintaining the replication factor, for increasing and decreasing it  
and how the module deals with busy providers that show increasing load levels.
Chapter 6 focuses on the implementation of our Replication Module. It gives detailed information for 
every component illustrated in chapter 4, how the communication with BlobSeer has been done and  
how we structured the work on two milestones, one for maintaining the replication factor and the  
other for increasing and decreasing it.
In Chapter 7, we evaluate our work. We include the results of several tests to outline the overhead that  
the Replication Module brings to BlobSeer. Moreover, we did an analysis on how the number of 
messages increases when the number of blobs becomes larger.
The last chapter of this thesis, Chapter 8, presents the conclusions on the Replication Module, based 
on the results obtained in last chapter’s tests.  Finally,  we mention possible improvements for the 
Replication Module and outline the conclusions of this paper.
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2. Related Work

Creating replicas of frequently accessed data chunks across a read-intensive network can result  in 
large bandwidth savings which can lead to reduction in user response time. However, data replication  
in the presence of writes incurs an extra cost due to multiple updates. The set of providers at which an 
object  is  replicated constitutes  its  replication scheme.  Finding an optimal replication scheme that 
minimizes the amount of network traffic, given the read, write and append frequencies for various  
objects, is NP-complete in general because of their fluctuation.
There are several algorithms that deal with the replication problem as well as file systems which  
already provide support for autonomic data replication system.
Below we  will  present  a  couple  of  the  algorithms  and  we  compare  them  to  our  adaptive  data 
replication module.

2.1 SRA, AGRA

The paper by Thanasis Loukopoulos and Ishfaq Ahmad [2] presents several algorithms which deal  
with the  Data Replication Problem, DRP. The first solution is a  static algorithm, called  SRA. It is 
efficient mainly with systems that are read-oriented. Because the static solution does not scale to the  
increasing  number  of  writes,  they  proposed  an  adaptive  genetic  algorithm, called  AGRA that 
overcomes the limitations of the SRA. A couple of elements that are worth following are data access 
time and data transfer cost. The latter algorithm proves to be efficient because it can rapidly adapt to  
the dynamically changing characteristics such as the frequency of the number of reads and writes.
The SRA static algorithm is based on a greedy method. It computes a benefit value per storage unit.  
This will help the system determine whether an object will be replicated on a certain site. Note that  
the algorithm yields good solutions when the number of reads is large.
Each site on the network will send during defined large periods of times (for example, every night) 
the read – write patterns for the objects the system hosts. Thus a central processing unit, called the  
monitor will determine where each object should be replicated in order to tune its access time and its  
network transfer cost. This proves to be inefficiently if the number of reads and writes fluctuates (for  
example, during day time).
In order to overcome the above mentioned limitations, the AGRA is a dynamic algorithm that makes 
an  analogy  between  the  initial  replication  scheme  of  the  objects  and  an  initial  population  of  
chromosomes. It works based on the three genetic search operations, namely, selection, crossover and 
mutation. In this case, a chromosome will contain all the objects and each bit that it contains will  
show the sites where they are replicated. In order to tune the replication scheme, each time the read –  
write pattern for an object changes below a threshold, the AGRA algorithm is executed to determine  
its new replication scheme.

2.1.1 Implementation details for SRA

To present the SRA algorithm, we maintain a list L(i) for each site i, S(i) containing all the objects that 
can be replicated. An object Ok can be replicated at site i, S(i), only if the remaining storage capacity 
b(i) of the site is greater than its size (i.e. b(i) ≥ ok) and the benefit value is positive. The benefit value 
Bk(i) consists of the expected benefits in NTC (network transfer cost) if we replicated Ok at S(i). The 
benefit is computed by using the difference between the NTC occurred from the current read requests,  
which would be eliminated if we made a replica, and the NTC arising due to updates to that replica.  
The algorithm keeps a list LS containing all the sites that have the opportunity to replicate an object.  
A site S(i) is in LS only if L(i) is not null. The SRA performs in steps. In each step, a site S(i) is chosen 
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from LS in a round-robin fashion and the benefit values of all objects belonging to L (i) are computed. 
The  one  with  the  highest  benefit  value  is  replicated  and  the  lists  LS,  L (i),  together  with  the 
corresponding nearest site value SNk

(i), are updated accordingly.
In this case, on each step there will be O(M+N) operations to execute, where N is the number of  
objects in the distributed system and M is the number of sites in the network. In the worst case, where 
each site has enough free space to hold all the objects and the number of updates is 0, there are MN 
such iterations. Hence, the complexity of the SRA algorithm is O(M2N+MN2).

2.1.2 Implementation details for AGRA

Each chromosome in the population of AGRA is a bitstring of length M. The O k is the object for 
which the algorithm is run. A 1 value in the ith bit of it denotes that site i, S(i), holds a replica of Ok. 
In the algorithm Ap will represent the population size and Ag the number of generations it evolves.  
The initialization of the first generation is performed by randomly generating half of the population  
while the rest is obtained from the solutions previously found by the static genetic algorithm. The 
three operations of GA (Selection, Crossover, Mutuation) come afterwards to define the population of 
the next generation. The Vk will deonte the NTC occured due to reads and updates of the object O k. 
Vk can be computed by omitting the summation for all objects 1 .. N in the total data transfer cost 
function, D.
After Ag generations, AGRA terminates having converged largely to find solutions in distributing Ok 
to a degree that minimizes the NTC of R/W requests. The best Rk found by AGRA is copied to half of 
the initial population of the genetic algorithm, including the corresponding elite chromosome (current 
network replica distribution), while the remaining Rks are randomly copied to the other half. Such 
transfer can result in storage capacity violation which needs to be resolved efficiently. Other than  
randomly de-allocating objects until the constraint is satisfied, we can follow a greedy method and  
calculate the negative impact each possible one object de-allocation has in the total data transfer cost  
function, D value. This can be O(M2N) in the worst case, where N stands for the number of objects in 
the distributed system and M for the number of sites in the network.
In order to estimate how beneficial a replica is (from the NTC reduction perspective), we must take  
into consideration both global properties of the object and local characteristics. The global properties 
consist of whether the object is read demanding or not and how many of its replicas exist in the  
network. Naturally, an object having a high update ratio, but being widely distributed will have more  
chances of being selected for de-allocation. A special weight to the local read requests needs to be  
given. Large objects with poor local read demand are preferred for de-allocation, since this will result 
in freeing up more space for future allocation. Finally, we include an estimation of how good the site  
acts as the potential closest neighbor of other sites, by calculating its proportional link weights. The 
computational  complexity of the  estimation is  O(M) for  a single object,  where M stands for  the  
number of sites in the network.

The replication module for BlobSeer meets the adaptive algorithm requirements but, unlike it, it is  
able to automatically adjust to the provider failures and maintain the replication scheme. 

2.2 ADR

The paper  by Ouri  Wolfson,  Sushil  Jajodia,  Yixiu Huang [3]  presents  an algorithm for  dynamic 
replication of objects in distributed systems. The algorithm is called Adaptive Data Replication, ADR 
and works only on a tree network (no redundancy loops). It is adaptive in the sense that it changes the  
replication scheme of the object (i.e. the set of processors at which the object is replicated) as changes 
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occur in the read – write pattern of an object (i.e. the number of reads and writes issued by each  
processor). The algorithm continuously moves the replication scheme towards an optimal one. The 
changes in the read – write pattern may not be known priori.
The algorithm is distributed. This means that each processor makes decisions to locally change the  
replication scheme and it does so based on statistics stored locally. Distributed algorithms present the 
following two advantages: they respond to changes in a more timely matter and their overhead is  
lower because they eliminate the extra messages required in the centralized case.
ADR changes the replication scheme to decrease its communication cost. The communication cost of 
a replication is the average number of interprocessor messages required for a read or a write of the  
object.
In the ADR, the initial replication scheme consists of a connected set of processors. At any time, the 
set of processors that form the replication scheme must be connected. The replication scheme expands 
as the read activity increases, and it contracts as the write activity increases. If the number of reads  
equals the number of writes, it remains fixed.
The ADR algorithm services the reads and writes of an object. They are executed as follows. A read  
of the object is performed from the closest replica in the network. A write updates all the replicas, and  
it  is  propagated  along the  edges  of  a  subtree  that  contains  the  writer  and  the  processors  of  the  
replication scheme.
The replication scheme changes dynamically every time period. The need for changes is determined  
using three tests, namely, the expansion test, the contraction test and the switch test.

2.2.1 Implementation details for ADR

In the ADR algorithm, the processors of the replication scheme, denoted R, are connected. A Ŕ-
neighbor is that node that belongs to R but has a neighbor that does not belong to R.
Each processor executing the ADR algorithm receives a priori a parameter t denoting the length of a 
time period (e.g., 5 minutes). Changes to the replication scheme are executed at the end of the time 
period, by some processors of the replication scheme. The need for changes is determined using three 
tests,  namely,  the  expansion test,  the  contraction  test,  and the  switch  test.  The expansion test  is 
executed by each processor that is an Ŕ-neighbor. Suppose that R is not a singleton set. Then we  
define a R-fringe processor to be a leaf of the subgraf induced by R. each R-fringe processor executes 
the contraction test. A processor can be both an Ŕ-neighbor and R-fringe. Then it first executes the 
expansion test, and if it fails, then it executes t he contraction test. A processor p of R that does not  
have any neighbors that are also in R (e.g. R is the singleton set {p}) executes first the expansion test,  
and if it fails, then it executes the switch test.
Expansion Test. For each neighbor j that is not in R, compare two integers denoted x and y. x is the  
number of reads that i received from j during the last time period; y is the total number of writes that i 
received in the last time period from i itself, or from a neighbor other than j. If x > y, then i sends to j  
a copy of the object with an indication to save the copy in its local database. Thus j joins R. Except  
from i and j, no other processor is informed of the expansion of R. The expansion test is performed by 
comparing the counters (one for the reads and the other for the writes). The counters are initialized to 
zero at the end of each time period and incremented during the following time period. The expansion  
test succeeds if the (if) condition is satisfied for at least one neighbor. It fails if it does not succeed.
Contraction Test. Compare two integers denoted x and y. x is the number of writes that i received 
from j during the last time period; y is the number of reads that i received in the last time period (the  
read requests received by i are made by i itself or receivfed from a neighbor of i different from j). If  
x>y, then i requests permission from j to exit R, that is, to cease keeping a copy. If there are only two  
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processors that hold a copy, the one that decides to cease the copy, announces the other processor his 
intention.
If processor i constitutes the entire replication scheme, then it is a Ŕ-neighbor; thus it must execute the  
expansion test. If the expansion test fails, then i executes the following (switch) test at the end of the  
time period.
Switch Test. For each neighbor n, compare two integers denoted x and y. x is the number of requests 
received by i from n during the last time period. If x>y, then i sends a copy of the object to n with an  
indication that n becomes the new singleton processor in the replicationscheme, and i discards its own 
copy.
When the (if) condition of the contraction or switch test is satisfied, then we say that the test succeeds, 
otherwise it fails.

At the end of each time period, an Ŕ-neighbor executes the expansion test. An R-fringe processor  
executes the contraction test. A processor that is both an Ŕ-neighbor and an R-fringe, executes first  
the expansion test and, if it fails, then it executes the contraction test. A processor of R that does not 
have a neighbor in R, executes first the expansion test, and, if it fails, then it executes the switch test.

Because on BlobSeer, a blob’s data chunks are distributed among the providers the replication module 
will communicate with the provider manager. Although the network can be seen as a tree with the  
provider manager the root and the providers the leaves, the replication scheme will change only based 
on the read - write operations. Unlike ADR where a processor contains the full file, on BlobSeer, a 
provider contains only several  chunks of it.  Therefore it  is  unnecessarily to move the replication 
scheme closer to the source of reads because the time will  not decrease. As it  was mentioned, it  
communicates with the provider manager and makes decisions on how to detect a dead provider, how 
to back-up data from it and how to increase or decrease the replication scheme. All these make the  
decisions less time-consuming for BlobSeer.

2.3 Dynamic Data Replication on various file systems

Among the file systems that provide dynamic data replication we will briefly mention two of them, 
namely Google File System (GFS) [4] and Hadoop Distributed File System (HDFS) [5].

2.3.1 The Google File System

In the first case, GFS [4] deals with the dynamic replication problem as follows. By default it stores  
three replicas for each file, but users can specify other replication levels for different parts of the file  
namespace. The replication decisions are made by the master. It re-replicates chunks of files as soon 
as the number of available replicas falls below a user-specified goal. Each chunk that needs to be re-
replicated is prioritized based on several factors such as how far it is from its replication goal. The  
placement  of  a  new  replica  is  based  on  equalizing  disk  space  utilization,  limiting  active  clone  
operations on any single chunkserver, and spreading replicas across racks.
The master rebalances replicas periodically: it examines the current replica distribution and moves 
replicas for better disk space and load balancing. Another attribute is to manage replicas in order to  
keep them up-to-date, such as when the chunk server goes up and needs to be synchronized to the last  
version.
This paragraph explains how GFS places a chunk replica. A GFS cluster is highly distributed at more 
levels than one. It typically has hundreds of chunk-servers spread across many machine racks. The 
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chunk replica placement policy serves two purposes: maximize data reliability and availability, and  
maximize  network  bandwidth  utilization.  For  both,  it  is  not  enough  to  spread  replicas  across  
machines,  which  only  guards  against  disk  or  machine  failures  and  fully  utilizes  each  machine’s  
network bandwidth.  Chunk replicas are spread across racks.  This ensures that  some replicas of a 
chunk will survive and remain available even if an entire rack is damaged or offline. It also means that  
traffic, especially reads, for a chunk can exploit the aggregate bandwidth of multiple racks. On the 
other hand, write traffic has to flow through multiple racks – a tradeoff.
The more detailed process of re-replication is the following. The master re-replicates a chunk as soon 
as the number of available replicas falls below a user-specified goal. This could happen for various 
reasons: a chunkserver becomes unavailable, it reports that its replica may be corrupted, one of its  
disks is disabled because of errors, or the replication goal is increased. Each chunk that needs to be re-
replicated is prioritized based on several factors. One is how far it is from its replication goal. For 
example, a chunk that has lost two replicas receives a higher priority than one that has lost only one  
replica. The systems prefer to replicate chunks for live files as opposed to chunks that belong to  
recently  deleted  files.  Moreover,  to  minimize the impact  of  failures  on running applications,  the  
system boosts the priority of any chunk that is blocking client progress.
The master picks the highest priority chunk and replicates it by instructing a chunk-server to copy the 
chunk data directly from an existing valid replica. The new replica is placed with goals similar to 
those for  creation:  equalizing disk space utilization,  limiting active replication operations  on any 
single  chunk-server,  and  spreading  replicas  across  racks.  To  keep  replication  traffic  from 
overwhelming client traffic,  the master limits the numbers of active clone operations both for the 
cluster and for each chunk-server. Each chunk-server limits the amount of bandwidth it spends on 
each replica operation by throttling its read requests to the source chunk-server.
The master rebalances replicas periodically: it examines the current replica distribution and moves 
replicas for better disk space and load balancing. Also through this process, the master gradually fills 
up a new chunk-server rather than instantly swamps it with new chunks and the heavy write traffic 
that comes with them. The placement criteria for the new replica are similar to those discussed above.  
In addition, the master must also choose which existing replica to remove. In general, it prefers to 
remove those on chunk-servers with below-average free space so as to equalize disk space usage.

On  BlobSeer,  the  replication  module  is  notified  when  a  provider  stops  responding.  When  that  
happens, the Replication Manager already knows what chunks were held on it  and tries to create  
copies of them on the remaining providers. Thus, the replication scheme is preserved. 

2.3.2 HDFS

HDFS [5] is designed to reliably store very large files across machines in a large cluster. It stores each  
file as a sequence of blocks. All blocks in a file, except the last block, are the same size. The block  
size and replication factor are configurable per file. An application can specify the number of replicas  
of a file. The replication factor can be specified at file creation time and can be changed later. Files in  
HDFS are write-once and have strictly one writer at any time.
The  NameNode  makes  all  decisions  regarding  replicaiton  of  blocks.  It  periodically  receives  a  
Heartbeat and a Blockreport from each of the DataNodes in the cluster. Receipt of a Heartbeat implies  
that the DataNode is functioning properly. A blockreport contains a list of all blocks on a DataNode.
HDFS’s reliability and performance relies mainly on the placement of replicas. Optimizing replica  
placement, improves data reliability, availability, and network bandwidth utilization.
For the common case, when the replication factor is three, HDFS’s placement policy is to put one 
replica on one node in the local rack, another on a different node in the local rack, and the last on a 
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different  node  in  a  different  rack.  This  policy  cuts  the  inter-rack  write  traffic  which  generally  
improves write performance. Note that the replicas of a file do not evenly distribute across the racks.  
One third of replicas are on one node, two thirds of replicas are on one rack, and the other third are  
evenly  distributed  across  remaining  racks.  This  policy  improves  write  performance  without 
compromising data reliability or read performance.
When a read is performed, HDFS tries to satisfy the request from a replica that is closest to the reader.  
Thus the global bandwidth consumption and read latency are minimized. If there exists a replica on  
the same rack as the reader node, then that replica is preferred to satisfy the read request. If the HDFS 
cluster spans multiple data centers, then the replica that is hosted on the local data center is preferred 
over any remote replica.
HDFS provides a Safemode state. On startup, the NameNode enters a special state called Safemode.  
Replication  of  data  blocks  does  not  occur  when  the  NameNode  is  in  the  Safemode  state.  The 
NameNode receives Heartbeat and Blockreport messages from the DataNodes. A blockreport contains 
the list of data blocks that a DataNode is hosting. Each block has a specified minimum number of  
replicas. A block is considered safely replicated when the minimum number of replicas of that data 
block has checked in with the NameNode. After a configurable percentage of safely replicated data  
blocks in with the NameNode, the NameNode exits the Safemode state. It then determines the lista of 
data blocks that still have fewer than the specified number of replicas. The NameNode then replicates  
these blocks to other DataNodes.

As for BlobSeer, the replication factor for a blob is specified on file creation. Based on the read / write 
fluctuations, it can increase or decrease. This helps the storage service to free unused space and fill it 
with copies of the highly used blobs.

The  Replication  Module  on  BlobSeer,  unlike  the  above  mentioned  replication  algorithms  and 
implementations, has an up-to-date view of the data stored by the providers. It knows at any time what 
chunks are on each data provider. Moreover, it is event-triggered, meaning that immediately after the 
Provider Manager detects a dead provider, the Replication Module listens to signals and based on the 
information  it  holds,  it  is  able  to  backup data.  However,  the  module  does  not  run  on  a  genetic 
algorithm such as AGRA and does not move the replication scheme closer to the clients as ADR does.
The main advantages the Replication Module brings to BlobSeer are: a reliable data storage service 
that  can  easily  adapt  to  provider  failures  and  a  dynamically-adjusting  replication  scheme  that  is 
optimized to use less storage resources.
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3. Background

3.1 BlobSeer

BlobSeer[1] is a data storage service designed to deal with requirements of large-scale data-intensive  
distributed applications. Data is abstracted as a large sequence of bytes and stored as a blob (binary  
large object), which is a very large file.
BlobSeer,  among other  data  storage  services,  addresses  storage  challenges  such  as  heavy access  
concurrency, blobs versioning, large aggregated storage space and fine grain access.
The fact that differentiates BlobSeer from the other data storage services is that it is the only one that 
supports concurrent writes, reads and appends while versioning the files and providing fine grained 
access to them.

Fig. 1, BlobSeer Architecture

BlobSeer’s current architecture [6] is illustrated in Figure 1. Clients initiate the read, write or append 
operations.  There  can be situations  where many clients access the  same resources for  reading or 
writing. BlobSeer’s support for concurrent operations [7] permits them fast and reliable access to the  
required resources. Data providers store the pages. They can automatically join or leave the system. 
The providre manager deals with provider monitoring and allocation strategy. Metadata providers 
store blobs’ metadata. It enables access to blobs’ metadata for offsets and different versions.  The  
version manager holds the version of each file. It deals with the serialization of concurrent write /  
append requests and with the assignment of version numbers for each new write / append operation.
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Fig. 2, Interactions inside BlobSeer: READ ( left) and WRITE (right)

The interactions between BlobSeer’s entities are illustrated in Figure 2.

Clients initiate the read, write and append actions [8]. 
A READ request in BlobSeer starts with the client optionally asking the Version Manager for the 
latest published version of a blob. If the specified version is available, then the client contacts the  
Metadata  Providers  to  retrieve  information  for  the  requested  blob.  The  client  fetches  the 
corresponding metadata  and contacts the Providers in parallel to read and store the pages in a local  
buffer.
However, in the case of WRITE requests the client asks the Provider Manager for a list of providers  
that are able to store the pages of the new (or updated, in the case of append) blob. Then, it contacts 
the Providers in parallel and writes the pages to them. Each Provider sends back an acknowledgement 
to the client. When the client has received all the acknowledgments, it contacts the Version Manager  
to  ask  for  a  new  version  number.  The  version  number  is  used  by  the  client  to  generate  the 
corresponding metadata. The new information must be updated and the client gets a version number 
for the update. The last steps are to add the new metadata in order to consolidate the new version and 
to report that the new version is ready for publication.
APPEND operations are only special cases of writes. Everything that is true for writes, is also true for  
appends, unless explicitly specified. 

3.2 MonALISA

MonALISA[9] which stands for Monitoring Agents using a Large Integrated Services Architecture is 
able  to  provide  complete  monitoring  for  complex  systems.  The  framework  helps  managing  and 
optimizing the operation performance of Grids, networks and running applications in real-time. In our 
project, MonALISA plays an important role in computing metrics based on data collected from agents 
that monitor the providers and on the fluctuations of read/write frequencies for a file. The metrics will  
be used by the Adaptive Data Replication Module to decide whether to increase or decrease the  
replication factor of a blob. To add MonALISA support, we used the MonALISA Service and the  
MonALISA Repository. The MonALISA Service receives information regarding the number of reads 
and writes for a blob through BlobSeer’s monitoring support [10] . 
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The MonALISA Repository [11] provides the ability for clients to subscribe to a set of parameters or 
filter agents to receive information from all the services. This offers the possibility to present statistics 
such as global views. In our case, we have choosen the MonALISA Repository to monitor the data 
providers for parameters such as load, free memory and bandwidth usage. 
The features that MonALISA provides makes it a good choice for monitoring a distributed storage 
system. It can monitor its predefined parameters as well as user defined ones. The monitoring of user 
defined parameters is  possible due to  an application instrumentation library called ApMON [12]. 
ApMON enables applications to send monitoring information to the MonALISA Service as UDP 
datagrams. Applications can report any type of information the user wants to monitor. 
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4. Replication Architecture Overview

The Adaptive Data  Replication  module  architecture  is  illustrated  in  Figure  3.  BlobSeer’s  current 
architecture consists of a provider manager, providers, metadata providers and a version manager. The  
Replication Module brings to BlobSeer two main elements: Listeners and the Replication Manager.

4.1 Listeners

The role of the Listeners is to send the required messages to the Replication Manager in order to  
assure that it has all the necessarily information it requires to work. Thus, Listeners send status update  
messages from the Provider Manager and the storage Providers. The status-update messages sent from 
the storage providers contain information about  the availability of a provider,  and the write-page 
events. A write-page event takes place when content is being written to a page on a blob and the  
Provider Manager allocates data providers to store the pages. As far as the status-update messages 
sent  from the Provider Manager are concerned,  they are triggered immediately after  the Provider  
Manager  acknowledges  the  unavailability  of  a  storage  provider  and  its  contents  need  backup  to 
preserve the replication scheme.

4.2 The Replication Manager

The role of the Replication Manager is to maintain, increase and decrease the replication factor for 
the blobs in the system based on received and monitored data. 

4.2.1 Maintaining the replication factor

In order to maintain the replication factor for blobs, the Replication Manager receives two types of  
status-updates. The first one represents triggered status-update messages that are sent from the storage  
Providers  and the Provider  Manager.  These messages  inform the  Replication Manager  about  the 
availability  of  storage providers.  Each provider  sends a  status-update  message to  the  Replication 
Manager when it becomes available on BlobSeer. Moreover, if it happens to become unavailable for  
any  reason,  the  Provider  Manager  is  the  one  that  triggers  the  update  to  inform the  Replication 
Manager about its unavailability. The second type of status-update messages are sent regularly from 
storage  providers  by  the  Listener  mentioned above.  They contain  information  about  the  recently 
written pages. These pages are stored by the Replication Manager on a hash-table that it holds for  
each provider.  The fact  that  these messages are sent  by the providers themselves and not  by the  
Provider Manager gives many advantages. Among them we mention the reduced number of messages 
that are sent across the system and the increased accuracy for the pages that the the replication module 
maintains in the providers’ hash-table and the actual information stored on the storage providers.
When a provider becomes unavailable, the Replication Manager knows what pages were stored on it  
and it can create copies to maintain the replication factor for the affected blobs. After the affected  
pages  are  copied,  if  that  is  possible  among  the  available  providers,  the  metadata  information  is 
updated.
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Our Replication Module will communicate with the Provider Manager, the Metadata Providers and 
with the data Providers to perform the necessarily operations in order to maintain the replication 
factor.  The  Listener  communicates  with  the  storage Providers  to  keep  up-to-date  the  Replication 
Manager with information regarding the providers’ availability and to receive information regarding 
the page keys that have been written on them. Moreover, the Replication Module communicates with  
the providers when a dead provider is detected and its pages must be copied to others to maintain the  
replication  factor  for  blobs.  Finally,  the  Replication  Module  communicates  with  the  Metadata 
Providers to update the metadata entries of each file that has been affected by the provider that went  
out of order.

The main advantage of proceeding like above is the fact that everything happens in the background. 
The end-user continues working, even if a replica of one of the blobs he was reading from fails. There  
are other replicas on the system and the user can read them, without losing data.

4.2.2 Increasing and decreasing the replication factor

The second important role of the Replication Manager is the automatic increase and decrease of the 
replication factor. These changes occur as the number of blobs’ reads vary. Moreover, the Replication  
Manager  is  able  to  prevent  providers  failure  by  monitoring  the  load  on  them.  We  have  used  
MonALISA  to  monitor  devices  and  access  monitored  data.  There  are  two  main  sources  for  
monitoring. 
First,  we  have  used  the  MonALISA  Service  to  communicate  with  the  monitoring  support  for 
BlobSeer. The monitoring support for BlobSeer records information such as blob ids, version, offsets,  
sizes, client ids, timestamps and stores them all on a database, thus making them accessible to the  
Replication Manager. The number of reads is used to compute a metric for each blob. The monitoring 
database is periodically queried to update the number of blobs’ reads. If, for example the number of  
reads for a blob doubles or it drops below 10% from its maximum recorded value, the Replication 
Module  decides  whether  to  increase  or  decrease  the  blob’s   replication  factor.  The  limits  for  
increasing and decreasing the blobs’ replication factor are easily adjustable. During this paper the  
limits are used for testing purposes. Thus, they are set to lower values than a real scenario would use.
Second, the load on providers is monitored using the MonALISA Repository that has to run on all  
providers. Currently we use Load5, free memory and the bandwidth usage to monitor all providers. 
When the load on a provider exceeds certain limits, the module automatically creates a backup of its  
pages in order to prevent data loss in case of provider failure. 
The main advantage the two monitoring services bring is that the automatic change of the replication 
factor can be blob-based or page-based. For example, if certain pages on one provider are highly  
accessed and the storage provider becomes overloaded, the Replication Manager can increase the 
replication factor only for those pages stored on that provider. Otherwise when the number of reads  
for a blob increases, the Replication Manager can increase the blob’s replication factor. Similarly, if 
the  number  of  reads  for  a  blob decreases  and there  seems to  be  no interest  on its  contents,  the  
Replication Manager decreases, in time, its replication factor. More details about the limits and how 
the metrics are computed is given in the following chapters.

Below you can see BlobSeer’s architecture with the Adaptive Data Replication Module. The figure 
shows the communication with MonALISA
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Fig. 3 BlobSeer with the Adaptive Data Replication Module
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5. Illustration

5.1 Maintaining the replication factor

Figure 2 shows an example of how our module works to maintain the replication factor of a blob. We 
chose this scenario because it is a very common one. BlobSeer is a data storage service intended to be  
used within large scale distributed environments and offered as a service on clouds. It gives access to  
a high storage capacity. Therefore, it deals with a large amount of data storage providers to store the  
desired data. Because disks fail, BlobSeer’s behavior is to see disk failure as something normal and 
not the exception. Our most important concern is to see what happens when a disk fails or there are  
communication problems with the data provider. In our example, we illustrate a topology with only 6  
data providers, for simplicity reasons, where one of them fails. In this scenario, the provider’s failure 
can be interpreted as disk failures, electricity issues or networking access problems.
In our example we consider that there is one blob of 8 pages with 2 replicas. When the blob is created, 
its data chunks are distributed among the 6 providers. We suppose that provider 3 fails to respond.  
Now,  the Adaptive Data  Replication Module  has  to  copy each page stored on provider  3  to  the  
working ones. It knows what pages it has to backup from the hash-table that saves the state of the  
providers. Thus, each data chunk from provider 3 will have a backup copy on another provider and  
the  replication  factor  will  be  preserved.  After  the  pages  are  copied,  the  corresponding  metadata 
information is updated as well. Thus clients will refer to the new copies of the chunks and the old 
provider will not be accessed until it becomes ready.

Fig. 2, Scenario of the Replication Module, maintaining the replication factor
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The following figure, Fig. 3, shows what actions are performed by the Replication Module for the 
above-mentioned scenario.

Fig. 3, Actions performed by the Replication Module
when a provider is out of order
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In the above example, we assumed that there are no page duplicates on any provider. Page duplicates 
are not permitted because ultimately all blob’s replicas could get on one provider making it a single  
point of failure. If we can’t copy pages to a provider, then we add them to the unresolved list for  
further processing. Pages that are in the unresolved list have priority due to an aging mechanism when  
a new provider becomes available. 

5.2 Increasing and decreasing the replication factor

The following 3 examples illustrate the Replication Module’s interaction with the MonALISA Service 
and MonALISA Repository.

5.2.1 Increasing the replication factor

5.2.1.1 Using MonALISA Service

Figure 4 shows how the Replication Module collects data from the monitoring services for BlobSeer. 
It  gets  monitored  data  from  MonALISA  Service  and  stores  it  on  special  tables  designed  for 
BlobSeer’s needs.  The monitoring services collect  useful  information from BlobSeer,  such as the  
write and read page events. For each of them it records a timestamp, the page’s key and different  
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numeric values.  All  these are stored on separate tables for reads and for writes.  The Replication  
Module  queries  periodically  the  monitoring  services  for  BlobSeer  at  regular  time  intervals.  We 
decided to use a time interval of 15 seconds. Each time it compares the results to the previous and 
based on statistics such as the maximum number of reads per time interval and the current one it  
makes decisions whether to increase the replication factor of that file. Currently BlobSeer increases  
the replication factor of a file if the current number of reads exceeds 2 times the maximum recorded  
number of reads. As it was mentioned above, these timers as well as all the parameters that we use can 
be easy customized.

First, after the blob was created and content was written to it, we read it 100 times in a time interval. 
On blob’s creation, the maximum number of reads on a time interval will be reset to 0. Each read in a  
time interval will be counted and if it exceeds the maximum value by 2 times then it will become the  
maximum. In our case, the first maximum value will be set to 100. Since it increased from 0 - the 
implicit value at file’s creation, the replication factor for the blob will not be updated. In another time 
interval, we decide to read the file 150 times. Because the Replication Module imposes a limit of 2  
times the maximum recorded number of reads, although 150 is greater than 100, it will not replace  
that value. Thus, the replication factor for the file still stays the same. 
Finally, we decide to read the file 1200 times. This time, 1200 reads exceed 2 times the maximum of 
100 and the Replication Module makes the decision to increase the replication factor for the current  
file by 1. It also updates the maximum number of reads from 100 to 1200. Next time the replication  
factor for the blob will be increased is when the number of reads exceeds 2400 counts. 

The time intervals to check the monitored values and the limit to update the maximum number of  
reads were designed to reduce the overhead this Replication Module brings to BlobSeer. As it was 
mentioned before, BlobSeer deals with large files and that is the reason why we should update the  
replication factor of a file only when it is necessarily, and not too often.
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Fig. 4, Increasing the replication factor using 
monitored information from MonALISA Service

5.2.1.2 Using MonALISA Repository

In Figure 5,  we illustrate how we use the load monitored from the data providers to modify the  
replication factor of the blobs. We monitor each storage provider and store the values in MonALISA 
Repository. The current implementation evaluates the load on those machines. We query periodically 
the MonALISA Repository for information regarding the load on our storage providers. When we  
observe that the load increases above a limit, we decide that the provider should have a replica of its  
pages on a new one or on the others. An increased load on a provider could mean that it is more 
exposed to failure or service delays. The ability to create a provider’s replica for the pages it stores 
brings the advantages of reducing the load on the machine and an available up-to-date copy of the  
provider in case it fails. 

The illustration, presents a topology with 6 data providers, for simplicity reasons. The Adaptive Data  
Replication Module behaves the same whether it has to deal with a couple of data providers or with 
hundreds of them. For illustration, we consider that there is one blob of 8 pages with 2 replicas. When  
the blob is created, its data chunks are distributed among the 6 providers. 

When the data providers start, the MonALISA Repository that runs on them monitors their load, free 
memory and bandwidth usage. The monitored parameters have equal proportions for computing the  
metric that is used to determine whether the provider is considered overloaded. In order for a provider 
to be considered overloaded, its load5 value should exceed 4, bandwidth usage should be more than  
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50% and the free memory should be less than 30%. If at least one of the conditions is met, then the  
Replication Module creates an exact copy of the pages the provider stores at that moment. This copy 
is distributed among the other providers unless they don’t create duplicates and on new providers in  
the system if there are any.

Fig. 5, Increasing the replication factor 
monitoring Load5 with the MonALISA Repository

5.2.2 Decreasing the replication factor

Figure 6 illustrates how the Replication Module makes the decisions when to decrease the replication  
factor for blobs. The action is based on the monitored information for BlobSeer from the MonALISA 
Service.  The  evolution of  read patterns  plays  an  important  role  in  deciding when to  increase or 
decrease of the replication factor. Thus, each 8 hours, the time interval to check monitored data, our 
Replication Module will query the databases to check for new udpates. It counts the number of reads 
per blob for the current time interval. If the number is below 10% the maximum recorded number of  
reads, it increases a below-limit hit counter. This hit counter indicates how many time intervals the 
number of reads has decreased to less than 10% of the maximum reads. If the hit counter reaches the  
value of 6, that means at least 48 hours the number of reads for a blob is below 10% of the maximum  
one, then we can decrease by 1 the replication factor of that blob. This brings us the advantage of  
freeing used space that automatically reduces costs for cloud implementations. 
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In our example, we illustrate a topology with 6 data providers, for simplicity reasons. The Adaptive  
Data Replication Module behaves the same whether it has to deal with a couple of data providers or  
with hundreds of them. For illustration, we consider that there is one blob of 8 pages with 2 replicas.  
When the blob is created, its data chunks are distributed among the 6 providers. 

After the blob was created and content was written to it, we read it 100 times in a time interval. On  
blob’s creation, the maximum number of reads on a time interval will be reset to 0. Each read in a 
time interval will be counted and if it exceeds the maximum value by 10 times then it will become the  
maximum. In our case, the first maximum value will be set to 100. Since it increased from 0 - the 
implicit value at file’s creation, the replication factor for the blob will not be updated. Then for the 
next 5 time intervals, we issue only one read per time interval. After the sixth time interval (the first  
one read the file 100 times while the next 5, each one time), the Replication Module decides to reduce  
the replication factor of the blob.
It  is important to notice that the replication factor is reduced only by 1 at a time. Moreover, the  
replication factor won’t be reduced if it is 1.

The time intervals to check the monitored values and the number of less-than 10% hits to be reached 
in  order  to  decrease  the  replication  factor  were designed to  reduce the overhead the  Replication 
Module brings to BlobSeer. As it was mentioned before, BlobSeer deals with large files and that is the  
reason why we should decrease the replication factor of a file only when it is necessarily.
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Fig.6, Decreasing the replication factor
using monitored data from  MonALISA Service
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6. Implementation Details

The Adaptive Data Replication Module is implemented as a separate module that communicates with  
the Provider Manager and with the Metadata Providers.
The project  was divided in two main milestones.  The first  milestone consists  of  maintaining the  
replication factor for each blob that it stores and the second one integrates the MonALISA monitoring 
service. 

6.1 Maintaining the replication factor

BlobSeer is now able to maintain the replication factor. To achieve this, we had to add a new module  
called the Replication Module. As mentioned above, this module consists of two components: the 
Listeners and  the  Replication  Manager.  The  listeners  work  on  the  storage  providers  and  on  the 
Provider  Manager  and  collect  necessarily  information  for  the  Replication  Manager.  There  are 
triggered and periodic  updates.  In  the  case  of  the  triggered updates,  the  listeners  on  the storage  
providers  inform the Replication Manager  about  the  availability  of  a  storage provider,  while  the  
listener on the Provider Manager informs it  when a provider becomes unavailable.  As far  as the  
periodic updates are concerned, each provider sends the most recent written pages it stores to the 
replication module. All these messages that are exchanged are called status-update messages. Thus,  
the Provider Manager sends a status-update message informing the replication module about a dead 
provider while each provider will  notify it about its availability and the pages it stores. All these 
messages that are exchanged between the listeners and the Replication Module consist of RPC calls.  
The Replication Manager receives the status-update messages sent by the Listeners from the storage 
providers and from the Provider Manager. These messages help it on making decisions maintain the 
replication  factor  when  it  is  informed  that  one  provider  became unavailable  to  the  system.  The  
Replication Manager has an updated view on the providers network and the pages they store. Thus,  
when one provider becomes unavailable, it knows immediately what pages were stored on it and starts  
creating backup copies. All this information is stored on a special hash-table. We called this hash 
table,  the providers map. The providers’ map keys include all the providers available on the system 
and  their  corresponding  values,  all  the  pages  that  are  written  on  a  provider.  This  hash-table  is  
populated from the status-update messages that the Replication Manager receives from the Listeners.  
When a provider becomes available, a new key consisting of the provider itself is added to the hash-
table and the list of written pages is null at first. Periodically, as pages are being written to the system,  
each provider sends to the Replication Manager the list of most recently written pages. These lists,  
from each provider are added to the corresponding keys in the hash-table. The time interval these lists 
are sent equals that used to announce the provider’s availability to the Provider Manager and is 5 
seconds (UPDATE_TIMEOUT). Every 5 seconds, the Replication Manager, as well as the Provider  
Manager get information from each provider. 
The Replication Manager must be fast when it is informed that a provider became unavailable and a  
backup has to be created for its pages on new providers. That is the reason we choose to implement a 
hash-table because of the low search time. When we hear that one provider is unavailable we can find 
its pages in O(1), that brings a plus to the overall performance of the Replication Module. This is also 
the case when we receive the periodic updates from the peroviders. Each status update with page keys 
is simply appended to the currently list of keys for the corresponding provider in minimum time.
Another data-structure that we implemented is a hash-table for the replication factor. This hash-table 
stores as keys all the page-keys on BlobSeer and as values, their replication factor. This brings great  
performance increases since there are many times when we must know how many replicas a page-key 
has or should have. Since the other method implied an RPC call and then a count of the number of  
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elements returned, our method provides a fast way to find the replication factor in O(1). Regarding the  
huge number of page keys that will be used on the system, this implies that a large amount of memory  
will be used to store this hash-table. Since in this case response time as well as processing time is 
critical, we choose to give time more weight than used memory. This hash table is populated each  
time status-update messages are received for the written pages by increasing the replication counter 
for the received key.
As it  was seen in  the  illustration above,  when one provider  fails,  the  Provider  Manager  sends a 
triggered status-update message to the replication module to take action. The Replication Manager,  
once it receives the message, knows what pages have to copy from the providers map. It also knows 
how many replicas each page has in the system. The number of replicas is necessarily to count the  
number of pages that will be requested. We decided that for each page that for every page-key that  
needs backup to ask that key’s replication factor pages from the Provider Manager. Thus, the Provider  
Manager simply adds the replication factors for the fallen keys and forms the required number of  
pages. It then asks the Provider Manager for the vector of providers that will be able to store them.  
The Provider Manager answers and now the page keys must be copied. Before copying a page to a  
provider  in  the  list  returned  from the  Provider  Manager,  we  have  to  check  for  that  page  key’s 
existence on that provider. If the page key has already one replica on a provider we cannot copy it  
again there. This will create duplicates on the system and is not permitted. Moreover allowing this  
would imply in time that all replicas of one page should get on a single provider making it a single  
point of failure for the availability of the entire blob. Thus, a page-key check is done and if it is found,  
the next provider in the list is being checked and so on. Now, there are two possibilities. The first one 
is to find a provider that has no replicas of the current page key and we can copy the page key to it  
without restrictions, thus maintaining the replication factor. But in the second case there is a chance 
that the list of providers the Provider Manager returns contains no provider that is able to store a  
replica of one page key. For example, when there are 4 providers, one of them fails and we had a blob  
with replication factor of 4. That implies that we are not allowed to create a backup for the failed 
provider on the remaining 3. Therefore, we decided to use another data structure, this time a vector  of  
tuples.  This vector contains each key that the Replication Manager was unable to store a copy when 
that was necessarily. We called this data structure the unresolved keys list. An example of how the 
unresolved keys list looks like:  

( <page key1, unresolved replicas1>, <page key2,unresolved replicas2>, ... )

The tuple (in the example is marked between < ... >) consists of the page key and the number of  
unresolved  / failed replicas for it. Because the unresolved keys list contains pages that were unable to  
be copied on the remaining providers, it will be processed only when new providers are available on 
the system. Thus, each time a new provider becomes available and sends the triggered message to the 
replication module, the Replication Manager starts processing the unresolved keys list. The list of 
unresolved keys has priority when a new provider is available. It contains sensitive data that is critical  
to be processed. Immediately when the Replication Manager hears of the new provider, it checks if  
there are any page keys in the unresolved keys list. If there are, it begins a similar process to the one  
described when a provider fails. This time we know for sure that as long as the new provider has free 
space, each page on the unresolved keys list can be copied on it as long as it creates no duplicates. As  
it was mentioned above, the list of unresolved keys holds a counter of unresolved replicas for every 
key.  Therefore,  we decided that  when new providers become available to the system to decrease 
gradually the number of unresolved keys. That means creating a backup copy of each page in the list 
before moving to the second copy of a page key. This brings us the advantage that the overall “critical 
level” of the page keys in the list shows a smooth decrease. A page gets out of the unresolved keys list  
when the number of unresolved keys equals 0. When a provider is available and the list of unresolved  
keys is processed, there may be keys that will be removed and others that will remain in the list. The  
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keys that remained will have a priority to the new keys that will be added to the end of the list. Thus,  
when maintaining the replication factor and there is no possibility to create backup copies for page 
keys, we created a list of unresolved keys. This list has priority when new providers are available.  
Moreover, there is a priority mechanism for the elements in the list, the older they get, the first they 
will be processed.
For every page that needs a backup, the replication module first tries to copy it on new providers,  
then,  if  the  copy  was  successful,  it  must  update  the  metadata  information.  BlobSeer’s  metadata 
information is stored on the Metadata Providers. For fast access to it, metadata is organized as a tree  
with versioning information. Each blob has its own tree for every version. Tree nodes are distributed  
in a fine-grain manner namely, DHT. It gives full access to concurrent reads and writes. When the  
replication module updates the metadata information, it will use the two DHT methods, get and put  
respectively. Get will be used to retrieve information for a given key while Put is used to update the  
information for a key.

6.2 Integration with MonALISA monitoring service

The second milestone gives BlobSeer the ability to make decisions to automatically increase and  
decrease  the  replication  factor  for  each  blob  or  parts  of  it.  These  decisions  are  made  based  on 
monitored data that is checked periodically. In order to check periodically data for the monitoring  
services, we created two watchdogs that run as sleep for the specified time interval seconds and then  
query the databases. To achieve this milestone, the Replication Module had to firstly automatically  
increase and decrease the replication factor for blobs and secondly to be able to create a replica of all  
the pages that are stored on a provider. The following sections describe how we accomplished these 
two steps.

6.2.1 Increase and decrease the replication factor for a blob

In order to make a decision of whether to increase or to decrease the replication factor for a blob, we  
must store additional information for each blob on our system. Based on the additional information 
and the queries  on the databases  the  Replication Manager  makes the decisions  to  increase or  to  
decrease the replication factor. In this situation when we query the database, we ask for information  
about the reads since we checked last time. The query returns with the pages that were written, the  
timestamp when it happened, the id, version and size of the blob. All these will be used by our data 
structures to make the information accessible to the Replication Manager. Thus, we have designed 
another hash-table that will index all the blobs in the system. Because we want to operate fast as well 
as not to waste too much memory where space can be saved, the keys of the hash-table are strings that  
concatenate “id version” of the blob. The id represents the blob’s id and the version is exactly the 
random number  that  is  generated when the page is  written to  BlobSeer.  Each version  of  a  blob 
corresponds to one random number that together with the blob’s id, uniquely identifies a blob in our 
hash-table  keys list.  From now on,  the  version number  will  be  identified as  the  random number 
generated by BlobSeer, unless otherwise specified. The blob’s id and its version are returned by the 
query for each timestamp in the reply. So far, we have the key for our hash-table. We have designed  
the values in this hash-table to be tuples that contain the blob’s number of pages, its page size, the  
maximum number of reads for it and the number of less-than 10% read hits.
The number of pages of a blob is computed when periodic write-page events are received from the 
data storage providers as described at the first milestone. The page size is returned by the query from 
the monitoring database.
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With  the information we already store, when we want to increase or to decrease the replication factor 
of  a  blob,  we  can  simply  generate  its  page  keys  that  follow  the  pattern:  <id,  version,  offset,  
page_size>.  We have the number of pages  and the page_size  and with one iteration through the 
number of pages all the page keys are generated. This brings many advantages such as less time spent 
on finding the number of pages and the blob’s page size since its id is in the hash-table’s keys vector.  
Another advantage is that for every blob, there is only one record in our data hash-table and this saves 
memory. 
For each time interval we want to find out what new changes occurred. All the monitored information 
is in the MonALISA Service’s database. When the MonALisa Service starts, it loads several filters  
that wait for monitored data from BlobSeer to reach the service. When the filter receives data, it sends  
them to the other component, the monitoring database server, which stores them in special Postgres  
tables. Thus, the query will ask for all the reads that occurred since the previous call. For each line  
returned in the result, we counted the page reads of all blobs.

First we present a pseudo-code with the steps that our algorithm performs in order to increase the  
replication factor for blobs.

function increase replication factor 
query database → result

for each element in result
determine blob and increase its current number of reads

for each blob that was read begin
compare current read with Rmax 
if Rmax is 0

update first time the Rmax

continue with the next unprocessed blob
else if 2 x Rmax < current reads then begin

- we have to increase the replication factor for the 
current blob
- generate blob’s page keys
if current page key does not exceed MAX_VALUE then

add each generated key to the unresolved keys list
end

end

process the unresolved keys list

end function

In order to increase the replication factor of a blob, we have to determine the exact number it was  
read. We divide the number of counted reads to the number of blob’s pages. The result is how many 
times a blob was read. This number is compared against the maximum number of reads, Rmax . If the 
value of Rmax is 0, then it means that we are checking for the first time the monitored information and 
we set it to the current number of reads. Otherwise we have to compare the number of reads against  
the maximum. If the current number of reads exceeds 2 times the maximum one, then we update the  
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maximum with it and start to generate the page keys. The page keys are generated as described above,  
with an iteration through the number of pages. Each generated page is pushed to the back of the  
unresolved keys vector unless it is not already there. If the page is already in the unresolved keys 
vector, then we update only the number of unresolved replicas for that page. After we push all the  
blob’s pages to the unresolved keys, we call the function that deals with the unresolved keys vector  
and tries to copy those pages to new or existing providers without creating duplicates. If a new replica  
was successfully added, then we update the information for the number of replicas of that page. This 
information is stored on another hash-table as described at milestone 1 that indexes the serialized page 
keys and as values counts the number of replicas for a page. We decided to use the page keys as index 
and not the blob because this gives us the flexibility of modifying the individual replication factor for  
page keys and not for the entire blob.

Second, in order to decrease a blob’s replication factor, the process is similar to the one mentioned 
above. For the beginning, here is the pseudocode for the function that deals with the replication factor  
decrease:

function decrease replication factor
query database → result

for each element in result
determine blob and increase its current number of reads

for each blob that was read begin
compare current read with Rmax
if Rmax is 0

update first time the Rmax

continue with the next unprocessed blob
else if current reads < (1/10)*Rmax then begin

- we have to decrease the replication factor for the 
current blob
- generate blob’s page keys
for each generated page key do begin

if current page key’s replication factor > 1 begin
get dht information for the current page key
erease one element from the dht
update the dht for the current page key

end
end

end
end

end function

 
The number of reads returned for the query is counted for each blob individually. The results are 
compared against the Rmax value. If the current number of reads for a blob is less than 10% the Rmax , 
then we increase the counter for less-than 10% hits in the touple for the blob. If the counter reaches 6, 
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then we add the blob to a vector whose elements represent blobs that will have the replication factor 
reduced by 1. It is important to notice that the replication factor for a blob will not decrease below 1 
because that would mean to delete the file entirely and this is not permitted by BlobSeer’s design 
rules.

When we designed the system, we planned to reuse the code. That is why, when we want to increase  
the replication factor for a blob we use the same vector as we would if we could not find a provider to 
store a key, namely the unresolved keys vector. The only difference is that in this particular situation, 
we do not wait for a new provider to become available, but we check immediately to copy the pages  
in it to the available providers. The function that performs the iteration in the unresolved keys vector,  
copies and updates the DHT information for the page keys is the same when increasing the replication 
factor for a blob with when a page could not be copied to the available providers and the Replication 
Module waits for a new data storage provider.

6.2.2 Create a provider replica

Load on a provider can increase to high values, and we might become concerned with its reliability. In 
this situation, a good approach would be to create a copy for all the pages of that provider. This will  
redistribute its load on the others. Our current data structures permit us to increase the replication  
factor not only for the entire blob, but for specific pages as well. As long as a page’s replication factor 
does  not  exceed  the  MAX_VALUE,  the  Replication  Module  is  allowed  to  increase  it.  The 
MAX_VALUE represents the upper limit for a page to increase its replication factor. The current  
implementation uses a value of 4 but that can be easily changed. MonALISA Repository monitors the  
load on providers. In our implementation, we have used only load5 to decide whether the provider  
needs a backup copy for its pages. When the load on a provider increases above 3, we start a process 
similar to the one described when the replication factor for a blob is increased. We generate each page 
key, we check if the page key has not reached yet its maximum replication factor and if another  
replica is permitted, we add the page to the unresolved keys list. If the same page was already there,  
then we increase the number of unresolved replicas for our page. Otherwise, the page is added to the 
back of the list for processing.
The upper limit of replicas for a page gives us more flexibility on dealing with the replication factor.  
Thus after creating a copy for all the pages on the provider, if its replication factor does not decrease,  
the whole process starts again. This repeats until either the page keys reach their maximum allowed  
replicas or the load decreases below the limit.

6.3 Issues

Work for  the  Replication  Module  was  not  an  easy  task.  There  were  many challenges  along the  
designing phase and the implementation. For the design phase, we first wanted the Provider Manager 
to be the only one who communicates with the Replication Module. After creating different scenarios,  
we found out that this design would increase the number of messages exchanged in BlobSeer for each  
write-page. So, we decided that the providers should communicate themselves the write-page events 
to the Replication Module. While this saved memory on the Provider Manager since each provider  
holds its own copy of the writen pages, the change only cut the number of exchanged messages by 
half because the Provider Manager was no longer involved in the write page events.

Another problem arose: how would the write-page events be transmitted to the Replication Manager?  
We have two solutions for it. Firstly, an intuitive answer would be to send them immediately as they 
occur. The advantage of this solution is that if a provider fails, the Replication Manager has up-to-date  
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information about the provider. More precisely, it has the most accurate information of the pages that  
were it stored. Secondly, each provider could build a local list of pages that it holds and send regularly  
the information to the Replication Module. This way, the Replication Manager may fail several copies  
if  there  were written pages since the last  update  until  the provider failed.  However,  as easy and  
intuitive the first solution might sound, we decided to change it in favor for the second one. There was 
one  big  reason  for  that:  the  reduced  number  of  messages  exchanged  with  BlobSeer.  Since  the  
messages are exchanged periodically, the number of written pages can differ in size, but the number 
of messages stays the same. For testing purposes, we implemented the first solution as well, but found 
out that the Replication Manager would simply fail when a blob of 256 MB replicated 4 times was 
written on BlobSeer. The Replication Module got simply stuck with a lot of messages arriving at the  
same time. On the other hand, when we tested the second solution, everything went smoothly and the 
Replication Module correctly received information for the written pages from all providers.

In the implementation phase, we found out that informing the Replication Module from the Provider 
Manager when a provider becomes available was not a smart idea. To explain why, we have the  
following scenario: there are several providers and one of them fails. Suppose that we try to copy the  
pages it stored on the remaining ones but no other provider could accept pages since they would  
create duplicates. Thus, our design dictates that the pages are added to the unresolved keys list. We 
add those pages to the unresolved keys list and wait for a new provider to become available. Let’s say  
that we are lucky and the new provider shows up and the Provider Manager just let us know about its  
availability. The same design tells us that the pages in the unresolved keys have processing priority 
and immediately after a new provider is available, we try to copy as many keys as possible from it.  
Said  and done.  The  normal  work-flow to  write  pages  in  BlobSeer  is  to  firstly  ask  the  Provider 
Manager a list of providers that are able to store them. Since our provider just became available in the  
system, its score is 0. Thus we make sure that the Provider Manager will include it in the list of  
providers. Theoretically all seems to be working just fine. The problem appeared when we tried to run 
it. It would wait and wait and eventually crack. After spending some time to analyse the problem we 
found  that  we  created  a  deadlock  by  communicating  with  the  provider  manager.  How  did  the  
deadlock appear? The answer is in the RPC messages exchange. The Provider Manager sent an ‘up’  
message to the Replication Module informing it about the availability of the provider. The Replication 
Module, immediately checked the unresolved keys list and since it was not empty started to ask the  
Provider Manager if there is anyone who can store the pages the list contained. This is where the  
deadlock happened. Since we added the priority to the unresolved keys list we start  processing it  
immediately a new provider becomes available. In our example, the Provider Manager waits for a  
confirmation message from the Replication Module that it acknowledged the availability of the new 
provider while the Replication Module asks the Provider Manager for a list of providers to store its  
pages. Both of them wait for each other to reply and no one can continue without an answer. That was 
the point where our system had to deal with a deadlock. We solved the issue by instructing the storage  
providers to send themselves that they are available to the Replication Manager. 

The solution to the deadlock, eventually lead to another problem. This time, the problem was more  
subtle since it did not manifest at every run. There were cases when the Replication Manager was  
notified before the Provider Manager about  the existence of the provider.  If  it  happened that  the  
Replication Manager wanted to copy pages on it, it was unable because the Provider Manager had no  
knowledge about the provider and could not modify its score. To solve the problem, we had to make 
several changes in the way the provider notifies the Replication Manager about its availability. It was 
clear that, by any means, the Provider Manager had to be the first to know about its existance and only 
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then the Replication Manager.  Every provider  communicates  with the  Provider  Manager  through 
periodic rpc calls. The time between two messages sent through rpc, is delimited by asynchronous  
waits of 5 seconds. Thus, the Provider Manager, receives every 5 seconds a presence update from 
every  provider.  In  order  to  solve  our  problem,  we  moved the code that  informs the  Replication 
Manager about the existence of a provider between two async_waits. Thus, the Replication Module 
learns that the new provider is up 5 seconds later than the Provider Manager. This gives plenty of time  
to the Provider Manager to update the existence of the new provider and to make sure it is able to use  
it.
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7. Evaluation

The  Adaptive  Data  Replication  Module  that  we  added  to  BlobSeer  deals  with  the  problems  of  
maintaining,  increasing and decreasing the replication factor  for  blobs.  As we  already know,  the 
Replication Module communicates with BlobSeer through RPC messages sent across the network. In 
order to evaluate our replication module, we plan to evaluate the overhead that it brings to BlobSeer.  
The  overhead  will  be  evaluated  for  two  important  factors:  time  and  the  number  of  exchanged 
messages. 

7.1 Testing Scenario

All the tests presented below were done on a BlobSeer deployment of 4 providers. The 4 providers are  
runing on 2 workstations, namely 2 per workstation. In our tests we use equal-sized blobs of 1MB 
each with a replication factor of 2. Both workstations run on Dual Core processors with 2000Mhz 
processors.  One of them, the remote one,  has 2 GB of RAM while the other has 4GB. The two 
computers have each 5400 rpm hard-disks. The providers have a total space of 1GB. Each computer 
runs a 32bit Linux distribution. They are connected with a 100Mbps full-duplex link to a router. Each 
provider will be given 2GB storage.

7.2 Time evaluation

We intend to evaluate the time for maintaining the replication factor and the time for increasing and 
decreasing it. 
First, we evaluate the time for maintaining the replication factor as the difference of time after a dead 
provider is marked as unavailable and the time the last page stored on it is copied to a new one or 
moved to the unresolved key. During the tests, we fluctuate the number of pages that are stored on the  
providers, thus increasing the workload on the Replication Manager.

7.2.1 Maintaining the replication factor

From the table below we can see that the time to create backup copies for the pages that are stored on  
a dead provider is increasing as the number of pages per provider increases. Although we increased  
the number of pages per provider, the increase ratio for the number of pages is less than the increase-
ratio for the time.
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No. Blobs No.  Pages  / 
Provider 

Duration

1 8 4.791574

2 16 4.518627

5 40 3.862959

10 80 5.921829

50 400 11.111309

100 800 16.974964

150 1200 23.124756

Below is the chart that illustrates our evaluation. With blue we have marked the number of pages that  
are stored on a provider. With orange, is represented the time it takes for the Replication Manager to 
move all the pages on a provider in case it fails. The effectiveness of our implementation consists in  
the  reduced  times  compared  to  the  large  number  of  pages  that  have  to  be  moved  to  the  other  
providers.

7.2.2 Increasing the replication factor

In order to increase the replication factor for a file, the conditions that were described in Chapters 6  
and 4 must  be met.  The test  was run each time the Replication Module queried the MonALISA 
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Service database for monitored information regarding the current READS. We measured the time 
since the Replication Module determined that the replication factor for a blob should be increased,  
until the last page for the last blob was written. The higher the number blobs, the more the time it lasts 
to increase the replication factor. 

No. Blobs Duration (s)

1 4.033224

2 4.429637

5 5.167387

10 7.145836

15 10.385917

20 12.372185

The chart below illustrates our results. This time, with blue we have represented the number of blobs  
and  with  orange,  above  them  is  the  time  it  takes  for  the  Replication  Manager  to  increase  the  
replication  factor  for  them.  For  every  test,  the  time  illustrates  the  number  of  seconds  that  the 
Replication Manager works to increase the replication factor for all the blobs that are available. 

7.3 Message exchange evaluation

The message  exchange  is  the  second  overhead  factor  that  we  evaluated.  Because  BlobSeer  is  a 
distributed storage service, it  relies on messages to communicate. Each message is sent using the  
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Remote Procedure Call (RPC) protocol using either TCP or UDP for the Transmission Layer. We  
intended to evaluate the number of messages exchanged by and from the Replication Module with 
BlobSeer. Because it is extremely large, we have created our own message monitoring watchdog that  
counts each RPC call, each database query and dht operations. 

We have performed two category of tests. The first counts the number of messages that are exchanged  
in order to maintain the replication factor. The second counts the number of messages exchanged in 
order to decrease by 1 the replication factor for the given blobs.

7.3.1 Maintaining the replication factor

We have seen in section 7.2.1 how the time increases with the number of stored pages per provider.  
The situation stays the same here. As we increase the number of blobs, and the number of pages per  
provider as well,  the exchange of messages rises. It  is important to notice what the steps are for  
creating a copy for a blob in order to justify the values. The table below includes the details for the  
tests and the results. 

No. Blobs No. Pages / 
Provider

No. 
Exchanged 
Messages

10 80 335

50 400 1619

100 800 3226

150 1200 4831

200 1600 6442

300 2400 9666

400 3200 12894

500 4000 16118
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The figure below contains the chart for the current test. With blue we have represented the number of  
pages per provider while with orange, the number of messages that were exchanged. 

7.3.2 Decreasing the replication factor 

So far, we tested the time and number of messages for maintaining and increasing the replication 
factor for blobs. In the current test, we watch the number of messages that our Replication Module 
exchanges with BlobSeer when it decides that the replication factor for blobs should be decreased by 
1. The table below shows the number of messages that are exchanged in order to decrease by 1 the 
replication factor for all the blobs that are available. The number is compounded as the number of 
blobs times the number of pages times 2, for DHT GET and DHT PUT. In this situation, we have a 
constant increase ratio with the number of blobs, assuming each of them has equal page sizes.
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No. Blobs No. Pages / 
Provider

No. 
Messages

1 8 43

2 16 74

5 40 171

10 80 331

15 120 491

20 160 651

The chart illustrates the data from the above table. Still the number of messages (orange) is larger than  
the number of pages per provider (blue) but values are less than those for maintaining the replication 
factor.

7.4 Performance Evaluation

In order to evaluate the Replication Module’s performance we take into account the convergence 
time. The convergence time represents the time that lasts from the detection of a dead provider until  
the replication factor of all the pages stored on that provider is reestablished. The convergence time is  
a sum of the time it takes for the Provider Manager to detect a dead provider (we call it Td), the time 
necessarily to inform the Listener to send a status-update message to the Replication Module (we call  
it Tsu) and the time it takes to get a provider for each page that was stored in the hash-table and to  
copy it (we call it Tcp per page). While the first timers until the data is copied are constant, the backup 
process varies in time depending on how many pages must be copied.
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Therefore, the total convergence time will be: T = Td + Tsu + n * Tcp , where n is the number of data 
chunks that were stored on the dead provider and need to be copied.

The Replication Module performed well on the above tests. The results, are influenced by the time  
network delays and the number of packets loss. Since we used TCP for the Transport Layer,  we 
experienced no loss of packets but this could represent a source for some delays. The Replication  
Module performed Well on all the tests. We checked the results after each test and BlobSeer was  
correctly recognizing a new replica or was able to perform READS and WRITES to new replicas or  
updated ones when providers were disconnected. There were several inconsistencies with the number  
of reads the replication module received from the MonALISA Service. The issues were due to the  
UDP messages the ApMon uses to transmit data. The problem was solved by increasing the UDP  
buffers for the MonALISA workstation.
Overall,  the  Replication  Module  achieved  its  goal  on  our  tests,  to  maintain  and  to  dynamically 
increase or decrease the replication factor of blobs based on monitored data. 
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8. Conclusions and Further Work

8.1 Contribution

In this paper, we have presented our approach towards creating an efficient adaptive data replication 
module for BlobSeer. The goals of the thesis were to implement a mechanism for BlobSeer that would 
enable it to maintain and automatically adjust blobs’ replication factor. We have managed to satisfy  
all our initial goals and produce a stable and reliable Replication Module.
The  integration  with  MonALISA  monitoring  service  and  MonALISA  repository  helped  us  in 
achieving our goal for accessing the monitored data. With the monitored data we were able to create  
metrics that were used to make decisions such as when the replication factor of a blob should be 
increased, decreased or even to detect a possible provider failure.

8.2 Future Work

Though the Replication Module is fully functional improvements can be made. A possible next step  
would be the optimization of the test results that were presented on chapter 7. As we have seen the  
duration and number of messages that was exchanged increased along with the number of blobs. 
More advanced metrics could help the Replication Module to be more precise when modifying blobs’ 
replication factor. It could also reduce the overhead that it brings to BlobSeer.
One  of  the  improvements  that  the  current  system could benefit  from would  be a  distribution  of 
replication managers in order to eliminate the problem of single point of failure. Such a distribution  
would imply synchronization for the information that needs to be shared.
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Appendixes

A1 Communication with BlobSeer:

boost::asio::io_service io_service;
rpc_server<config::socket_namespace> rmanager_server(io_service);
std::string config_file;
config_file.append(argv[1]);
repl_manager r_manager(config_file);

//rmanager_server.start_listening(host, service);  does not work

/*
 * registering the rpc and starting the service.
 */
rmanager_server.register_rpc(RMANAGER_PROVIDER_DOWN,

(rpcserver_extcallback_t) 
boost::bind(&repl_manager::provider_down,

boost::ref(r_manager), _1, _2, _3));

rmanager_server.register_rpc(RMANAGER_STATUS_UPDATE,
(rpcserver_extcallback_t) 

boost::bind(&repl_manager::status_update,
boost::ref(r_manager), _1, _2, _3));

rmanager_server.start_listening(config::socket_namespace::endpoint(
config::socket_namespace::v4(), atoi(service.c_str())));

INFO("listening on " << rmanager_server.pretty_format_str());
io_service.run();
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A2 Actions performed when a provider becomes unavailable:

INFO("Provider: [" << provider << "] is: " << message);

/*
 * If provider is down
 */
if (message.compare("unavailable") == 0) {

//if it holds no keys - exit.
if (providers_map[provider].size() == 0)

return rpcstatus::ok;

metadata::replica_list_t adv;
metadata::query_t crt_page_key;
unsigned int no_pages_processed;
std::string adv_provider;
std::stringstream page_key_s;

/*
 * We have to compute the number of required pages from the PM
 * This number is the sum of the replica_counts for all the 

pages
 * stored on the unavailable provider.
 */

uint64_t num_pages = 0;

DBG("we have to move the following pages:");

for (i = 0; i < providers_map[provider].size(); i++) {
page_key_s.str("");
page_key_s << providers_map[provider][i];
DBG("[" << provider << "] "

<< providers_map[provider][i]
<< " X "
<< key_replcount[page_key_s.str()] );

num_pages += key_replcount[page_key_s.str()];

/*
 * Important: downgrade the replication factor for the 

key
 * It will be updated when the key is copied
 */
key_replcount[page_key_s.str()] --;

}

DBG("We require " << num_pages << " pages from the Provider 
Manager");

res = get_new_providers(adv, num_pages);

if (!res || adv.size() < providers_map[provider].size())
ERROR("could not get the list of providers");

else
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DBG("got the list of new providers");

/*
 * parse the list of adv providers and try to get one for each 

page.
 * One provider is eligible to store a copy of a key if it does 

not
 * already have a copy of that key.
 */
for (no_pages_processed = 0; no_pages_processed

< providers_map[provider].size(); no_pages_processed++) 
{
has_provider = false;
crt_page_key = providers_map[provider][no_pages_processed];

for (i = 0; i < adv.size(); i++) {
/*
 * if the adv provider is not already used
 */

if (adv[i].host.empty() && adv[i].service.empty())
continue;

adv_provider.clear();
adv_provider.append(adv[i].host);
adv_provider.append(":");
adv_provider.append(adv[i].service);
adv_provider.append("\0");

/*
 * check if the current adv provider holds a copy 

of the current key
 */
for (j = 0; j < providers_map[adv_provider].size(); 

j++)
if (providers_map[adv_provider][j] == 

crt_page_key)
break;

/*
 * if it does, try the next adv provider.
 */
if (j < providers_map[adv_provider].size())

continue;

/*
 * otherwise, copy the current page to the new adv 

provider.
 */
DBG("Page [" << crt_page_key

<< "] will be copied to new provider: 
["
<< adv_provider << "]");

res_change = change_replica(crt_page_key, host, 
new_service,
adv[i].host, adv[i].service, false);
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/*
 * mark the current adv provider as being used
 */
adv[i].host.clear();
adv[i].service.clear();

has_provider = true;
break;

}
/*
 * if we could not get a provider for the current key:
 *  - we push it into the uresolved_keys list to try 

later when
 *  there will be many providers
 */
if (!has_provider || !res_change) {

INFO("Could not get a provider to store page_key: 
["
<< crt_page_key
<< "]. Page key added to the unresolved 

list");

//update the pages that will be required from the 
Provider Manager

page_key_s.str("");
page_key_s << crt_page_key;

//increase the number of failed replicas for the 
current key.

for (j = 0; j < unresolved_keys.size(); j++)
if (unresolved_keys[j].get<0> () == 

crt_page_key)
break;

/*
 * if we found the key - increase the number of 
failed replicas
 * otherwise add the new key with 1 failed replica.
 */
if (j < unresolved_keys.size()) {

get<1> (unresolved_keys[j])++;
} else {

unresolved_t crt_unres;

get<0> (crt_unres) = crt_page_key;
get<1> (crt_unres) = 1; // we have one failed 

replica
unresolved_keys.push_back(crt_unres);

}

//update the DHT for the current replica
res_change = change_replica(crt_page_key, host, 

new_service,
"n/a", "n/a", true);

}
}
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/*
 * we have to remove the dead provider from the hash-table
 */
providers_map[provider].clear();
providers_map.erase(provider);

45



A3 Actions performed when a provider becomes available:

if (message.compare("available") == 0) {
/*
 * We have a new provider in the system
 * We try to copy each page from the unresolved list to the new 

one.
 */
providers_map[provider].clear();
if (unresolved_keys.size() > 0)

check_keys_queue(new_host, new_service);
}
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A4 Status-update:

/*
 * The function deals with the status-update messages. These messages are
 * received periodically from providers when write-page events are 
triggered
 * on them.
 * The function receives in params the page-keys written since the previous
 * call and adds them to the providers_map hash-table.
 */
rpcreturn_t repl_manager::status_update(const rpcvector_t &params,

rpcvector_t &result, const std::string &sender) {

bool local_result;
DBG("GOT WRITE PAGE");
metadata::query_t page_key;
std::string service, provider;
key_v received_pages;
uint32_t i;
std::string crt_id; //from the current page key: < id 

the_random_value >
std::stringstream aux_str;

if (!(params[0].getValue(&service, true) && params[1].getValue(
&received_pages, true))) {

ERROR("[" << sender << "] RPC error: at least one argument is 
wrong");

return rpcstatus::earg;
}

status_update_counter ++;

provider.clear();
provider.append(sender.substr(0, sender.find_first_of(":")));
provider.append(":");
provider.append(service);
provider.append("\0");

DBG("status-update from [" << provider << "] got "
<< received_pages.size()
<< " page keys:");

/*
 * add the received pages to the providers map
 */

i = 0;
while (i < received_pages.size()) {

rpcvector_t v_params;
metadata::root_t query_root(0, 0, 0, 0, 0);
local_result = true;

/*
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 * store the replication factor for the current key
 */
aux_str.str("");
aux_str << received_pages[i];
key_replcount[aux_str.str()]++;
DBG("key: " << aux_str.str() << " key_replcount: "

<< key_replcount[aux_str.str()]);

/*
 * the key for the blob_aux_info map
 * string: (id version/rnd)
 */
crt_id.clear();
aux_str.str("");
aux_str << received_pages[i].id << " " << 

received_pages[i].version;
crt_id = aux_str.str();

/*
 * update the number of pages for the current blob/version
 */
if (blob_aux_info.find(crt_id) == blob_aux_info.end()) {

get<0> (blob_aux_info[crt_id]) = 0; //nr_pages
get<1> (blob_aux_info[crt_id]) = received_pages[i].size; 

//page_size
get<2> (blob_aux_info[crt_id]) = 0; //Rmax
get<3> (blob_aux_info[crt_id]) = 0; //nr_hits

} else if (blob_aux_info[crt_id].get<0> () < 
received_pages[i].offset + 1) {

get<0> (blob_aux_info[crt_id]) = received_pages[i].offset 
+ 1;

DBG("crt_id: <" << crt_id << "> has: "
<< blob_aux_info[crt_id].get<0>() << " 

pages");
}

providers_map[provider].push_back(received_pages[i++]);
}

INFO("Providers_map[" << provider << "].size = "
<< providers_map[provider].size());

return rpcstatus::ok;
}
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A5 Unresolved list checker

/*
 * check_keys_queue checks the unresolved list of keys and tries
 * to find a provider to maintain the replication factor for them
 */
void repl_manager::check_keys_queue(std::string new_host,

std::string new_service) {

uint64_t i, j, crt_key_no, required_pages = 0;
metadata::replica_list_t adv, feasible_adv;
bool res, res_add, no_change;
metadata::query_t crt_page_key;
std::string adv_provider;
std::stringstream saux;
p_map local_providers_map = providers_map;

for (i = 0; i < unresolved_keys.size(); i++) {
saux.str("");
saux << unresolved_keys[i].get<0> ();
required_pages += key_replcount[saux.str()];

}

DBG("We require " << required_pages << " pages from the Provider 
Manager");

res = get_new_providers(adv, required_pages);

if (!res || adv.size() < required_pages) {
INFO("could not get the list of providers");

} else
INFO("got the list of new providers");

/*
 * the list of feasible providers should contain only the new 
provider
 * The rest of providers cannot hold copies in order to avoid 
duplicates
 */

feasible_adv.clear();
if (new_host.compare("n/a") != 0 && new_service.compare("n/a") != 0) 
{

for (i = 0; i < adv.size(); i++)
if (new_host.compare(adv[i].host) == 0 && 

new_service.compare(adv[i].service) == 0)
feasible_adv.push_back(adv[i]);

} else {
/*
 * TODO: check if no new provider
 */
feasible_adv = adv;

}

/*DBG("List of feasible adv:");
for (i = 0; i < feasible_adv.size(); i++)
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DBG(i << ". " << feasible_adv[i]);*/

adv = feasible_adv;
crt_key_no = 0;

while (1) {
res_add = false;
no_change = true;

DBG("Processing "
<< crt_key_no
<< " key: "
<< unresolved_keys[crt_key_no].get<0>());

crt_page_key = unresolved_keys[crt_key_no].get<0> ();

/*
 * find a provider and move the page's contents to it -> 

increase the
 * replication factor for the current page
 */
for (i = 0; i < adv.size(); i++) {

/*
 * check if the current adv provider already holds a copy 

of
 * the current key
 */

adv_provider.clear();
adv_provider.append(adv[i].host);
adv_provider.append(":");
adv_provider.append(adv[i].service);
adv_provider.append("\0");

for (j = 0; j < local_providers_map[adv_provider].size(); 
j++)

if (local_providers_map[adv_provider][j] == 
crt_page_key)

break;

/*
 * if it does, try the next adv provider.
 */
if (j < local_providers_map[adv_provider].size())

continue;

//DBG("adv[" << i << "]:" <<adv[i]);
/*
 * otherwise, copy the current page to the new adv 

provider.
 */
INFO("Page ["

<< crt_page_key
<< "] will be copied to new provider: ["
<< adv_provider
<< "]");
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res_add = add_replica(crt_page_key, adv[i].host, 
adv[i].service);

if (res_add) {
no_change = false;
INFO("Added new replica of key:"

<< crt_page_key
<< ". Updating providers_map["
<< adv_provider
<< "]" );

local_providers_map[adv_provider].push_back(crt_page_key);

/*
 * decrease the number of unavailable replicas
 * update the current adv provider as being used
 */
adv.erase(adv.begin() + i);
if (unresolved_keys[crt_key_no].get<1> () > 1)

get<1> (unresolved_keys[crt_key_no])--;
else {

unresolved_keys.erase(unresolved_keys.begin() 
+ crt_key_no);

crt_key_no--;
}
break;

}

}
/*
 * if we could not get a provider for the current key:
 *  - we keep it into the uresolved_keys list to try later
 */
if (!res_add) {

INFO("Could not get a provider to store page_key: ["
<< crt_page_key
<< "]. Page key stays to the unresolved 

list");
}

if (crt_key_no < unresolved_keys.size() - 1)
crt_key_no++;

else {
crt_key_no = 0;
if (no_change)

break;
}

if (unresolved_keys.empty())
break;

}

}
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A6 Function to increase the replication factor:

/*
 * This function adds a new replica to a page.
 * The function performs the following 3 steps:
 * 1. Reads the page's content on a local buffer
 * 2. Writes on the new provider the contents of the page
 * 3. Updates the entry for the corresponding key in DHT
 *
 */
bool repl_manager::add_replica(metadata::query_t page_key,

std::string new_host, std::string new_service) {

//DBG("started add_replica");

random_select vadv, vadv_copy;

/*
 * Get page's replicas
 */
//DBG("getting replicas for page_key: [" << page_key << "]");
bool result = get_replicas(vadv, page_key);

if (!result) {
DBG("false result");
return false;

}

vadv_copy = vadv;

DBG("Page_Key: " << page_key << " has replica(s): ");

int i = 1;
while (1) {

metadata::provider_desc adv = vadv_copy.try_next();
if (adv.empty())

break;DBG("\n\t" << i << ". " << adv );
i++;

}

metadata::replica_list_t adv_list;

std::stringstream s1;
s1.str("");
s1 << page_key.id << " " << page_key.version;

/*
 * Read page's contents and write data to the new provider
 * To read, we have to create a vector (page_result) that will have
 * a size = the number of pages current blob
 */
boost::dynamic_bitset<> page_result( get<0>(blob_aux_info[s1.str()])

+1 );

rpcvector_t write_params;
write_params.push_back(buffer_wrapper(page_key, true));
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buffer_wrapper page_contents;

vadv_copy = vadv;
/*
 * Fetching data to be read in a local buffer
 */
char *buffer = (char*) malloc(1 << 20 * sizeof(char));
result = read_page_content(page_key, buffer, "n/a", "n/a",  

vadv_copy);

if (!result) {
INFO("Could not read page " << page_key << " . Perhaps there " 

<< "are no more replicas");
return false;

}

/*
 * Writing data from buffer to the new provider
 */

metadata::provider_desc adv;
adv.host = new_host;
adv.service = new_service;

write_params.push_back(buffer_wrapper(buffer, page_key.size, true));

direct_rpc->dispatch(new_host, new_service, PROVIDER_WRITE, 
write_params, boost::bind(&repl_manager::rpc_write_callback, this, 
boost::ref( page_result), boost::cref(adv), write_params[0], 
write_params[1], page_key.offset, 0, _1, _2));

direct_rpc->run();

add_replica_counter ++;

if (!page_result[page_key.offset]) {
ERROR("WRITE "

<< page_key
<< ": none of the replicas of page could be written 

successfully");

return false;
}

/*
 * Updating DHT entry with the new provider
 */
adv_list.empty();
vadv_copy = vadv;

i = 1;
while (1) {

metadata::provider_desc adv = vadv_copy.try_next();
if (adv.empty())

break;

adv_list.push_back(adv);
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DBG("\n\t" << i << ". " << adv);
i++;

}

adv.host = new_host;
adv.service = new_service;
adv_list.push_back(adv);
DBG("\n\tAdding to DHT:" << i << ". " << adv);
i++;

result = true;
//DBG("PUT PAGE KEY: " << page_key);
/*
 * Perform put to update the entry in DHT
 */
dht->put(buffer_wrapper(page_key, true), buffer_wrapper(adv_list, 

 true), TTL, SECRET, bind(write_callback, 
boost::ref(result), _1));

dht->wait();

dht_put_counter ++;

if (!result)
DBG("Something went wrong with put page key");

INFO("Completed successfully.");

return true;
}
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A7 Function to decrease the replication factor:

/*
 * this functions reduces the replication factor for the given pages
 * by 1.
 * blobs are given by "id version" and all their pages are generated
 * inside.
 */

bool repl_manager::remove_one_replica(std::vector<std::string> pages) {

metadata::query_t page_key;
std::stringstream s1, s2;
std::string blob; //only id and version
uint32_t p_id, p_version;
size_t pos;
unsigned int i, x;
bool result;

for (x = 0; x < pages.size(); x++) {
blob.assign(pages[x]);
DBG("blob:" << blob);

pos = blob.find_first_of(" ");
s1 << blob.substr(0, pos);
s1 >> p_id;

s2 << blob.substr(pos + 1);
s2 >> p_version;

page_key.id = p_id;
page_key.version = p_version;
page_key.size = blob_aux_info[blob].get<1> ();

for (unsigned int crt_page = 0; crt_page
< blob_aux_info[blob].get<0> (); crt_page++) {

page_key.offset = crt_page;

std::stringstream page_key_s;
page_key_s << page_key;

DBG("Page_Key: " << page_key << " X "
<< key_replcount[page_key_s.str()]);

/*
 * check the minimum permitted replication level
 */
if (key_replcount[page_key_s.str()] <= REPL_LOWER_LIMIT) 
{

DBG("Page key: " << page_key_s.str()
<< "Cannot decrease the replication 

factor below: "
<< REPL_LOWER_LIMIT);

continue;
}
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//DBG("removing: " << page_key);

random_select vadv, vadv_copy;

/*
 * Get page's replicas
 */

result = get_replicas(vadv, page_key);

if (!result) {
DBG("false result in get_replicas");
return false;

}

vadv_copy = vadv;

/*
 * remove the first replica by try_next() and put back in 

dht the
 * remainder replicas
 */
metadata::provider_desc adv = vadv.try_next();
//DBG("Removing " << adv);
metadata::replica_list_t adv_list;

adv_list.empty();
vadv_copy = vadv; //the first element is skipped above in 

adv.

i = 1;
while (1) {

metadata::provider_desc adv = vadv_copy.try_next();
if (adv.empty())

break;

adv_list.push_back(adv);
//cout << "\t" << i << ". " << adv << endl;
i++;

}

result = true;

/*
 * Perform put to update the entry in DHT
 */
dht->put(buffer_wrapper(page_key, true), 

buffer_wrapper(adv_list,true), TTL, SECRET, 
bind(write_callback,boost::ref(result), _1));

dht->wait();

dht_put_counter ++;

if (!result)
DBG("Something went wrong with put page key");
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INFO("Successfully removed one replica for " << 
page_key);

/*
 * update the local replication counter;
 */
key_replcount[page_key_s.str()]--;

}
}

return true;
}
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