Distributed Monitoring
for User Accounting in
BlobSeer Distributed Storage System

Master Thesis

Mihaela-Camelia VLAD
mihaela-camelia.vladQirisa.fr

Supervisors: Alexandra Carpen-Amarie, Gabriel Antoniu, Luc Bougé
Alexandra.Carpen-Amarie@inria.fr, Gabriel.Antoniu@inria.fr, Luc.Bouge®@bretagne.ens-cachan.fr

INRIA, KerData Project-Team
February 1st, 2010

Abstract

This paper addresses the problem of using monitoring for keeping track of user activ-
ity inside a large-scale distributed storage system. Also, we are trying to determine the
possible malicious actions performed by such users. In order to do this, we designed a
monitoring system that uses MonALISA for the gathering of data and a distributed stor-
age within Postgres databases. As a result, our system handles and stores large amounts
of monitoring data, and it processes it in an on-line manner, in order to obtain real-time
information about the users in the system and possibly block those with malicious inten-
tions.

Keywords: Distributed system, storage management, large-scale system, malicious
users detection, monitoring

Contents

1

Introduction
1.1 Context o e
1.2 Motivation e e e e e

Background knowledge
2.1 BlobSeer
22 MonALISA

Addressing security issues in BlobSeer

3.1 SecurityissuesinBlobSeer o L L L

3.2 Maliciousclients.

3.3 Our approach: Using BlobSeer monitoring in user activity history

3.4 Contribution: Architecture of the user accounting module
341 Relatedwork o L.
3.4.2 Previous work: Bringing introspection to BlobSeer
3.4.3 Architecture of the user accountingmodule

Distributed monitoring system components

41 Instrumentationlayer. 0.
411 Providerlevel L oo
412 Versionmanagerlevel,

42 Monitoring layer - The MonALISA Filter

43 Dataprocessinglayer L L
43.1 Storing monitoringdata oo L L
432 Creating a summary of received monitoringdata
43.3 Computing clienthistory

4.4 User accounting - Computing malicious clients list

Conclusion
5.1 Contribution e
52 Futurework e

1 Introduction

1.1 Context

Cloud computing [6], [18] is an emerging paradigm that is becoming increasingly popular
in both industry and scientific communities. It promotes a new and innovative concept in
managing hardware and software resources: instead of buying and maintaining them, users
can rent virtual machines, storage space or already deployed software platforms. Cloud
services have been proposed by leading industry companies, such as Amazon [15], Yahoo,
IBM, Google [16] or Microsoft [17], which have strongly promoted the concept during the
last years. In addition to those, the academic communities are also becoming interested in
this topic. There are open-source projects, such as Nimbus [11] or Eucalyptus [10], that aim
at providing a Cloud computing framework with the help of virtualization to members of
scientific societies, for studies on the subject.

In this context, data management is a key issue. While users are provided with the ability
to store data on remote, virtual resources, the need for mechanisms able to provide feedback
about the state of the system becomes obvious. Monitoring its condition and activity can pro-
vide significant progress in areas such as efficient management of resources, performance,
quality of service or security [7].

Client monitoring is important in ensuring that the terms of usage stipulated by the
provider are being respected. The storage service has to be aware of its different client types,
each with specific privilege levels, access rights or quality of service requirements [20]. When
policy violations are detected, the system needs to enforce adaptive security rules.

These objectives could be reached by developing a system that continually analyzes the
user activity and monitors the general state of the system, in order to determine abnormal
activity or potential insecure events happening within.

1.2 Motivation

This work addresses how monitoring can be used in keeping track of user activity inside a
cloud storage system. It discusses the useful data that should be collected by the monitoring
tools in order to present the user with a detailed and meaningful image of the storage system
and of the data inside. A key point is to identify how the data must be processed in order to
obtain a real-time image of the integrity of data within the system and of the users creating
it.

As a case study, we use the BlobSeer [8] distributed storage system as a framework for
our work. BlobSeer is a large-scale data-sharing system, which aims to efficiently manage
the storage of large and unstructured binary data blocks.

We also have to consider the monitoring challenges raised by a large-scale storage sys-
tem, such as the large number of nodes, the fine-grained striping of the data over the storage
nodes and the heavy concurrent access to data. The MonALISA system [5] is a monitor-
ing framework designed as an ensemble of autonomous subsystems which are registered as
dynamic services and cooperate in performing a wide range of information gathering and
processing tasks. It is a system able to meet our challenges, and a user accounting system
for BlobSeer can rely on it for gathering the required information.

Our work is based on some previous research addressing how monitoring can be used
in keeping track of user activity inside BlobSeer: a 3-layered architecture has been designed
in order to bring introspection capabilities within the system. Data is indexed based on the
BLOB it refers and collected inside a centralized storage, where it can be consulted in order
to view or extract information.

Using this work as a starting point, we have designed our own monitoring system, fine
tuned for gathering and interpreting information about the users of BlobSeer. What we
propose in addition to earlier work is a distributed architecture for storing and processing the
received data, and also a module that uses the results obtained to compute a list of what we
call malicious clients.

2 Background knowledge

2.1 BlobSeer

BlobSeer is a data-sharing system that manages the storage of large and unstructured data
blocks called binary large objects, referred to as BLOBs further in this report. It is developed
inside the KerData Project-Team, at IRISA, France, and hosted at blobseer.gforge.inria.fr.

BlobSeer addresses the problem of efficiently storing massive BLOBs in large scale dis-
tributed environments. The BLOBs are striped into small chunks that have the same size,
called pages. It provides an efficient fine-grained access to the pages belonging to each
BLOB, as well as the possibility to modify them, in a distributed, multi-user environment.

The system consists of distributed processes that communicate through remote proce-
dure calls (RPCs). A physical node can run one or more processes and, at the same time,
may play multiple roles from the ones mentioned below.

Clients. Clients may issue CREATE, WRITE, APPEND and READ requests. Their number
dynamically varies in time without notifying the system. There can be many concur-
rent clients accessing the same BLOB or different BLOBs in the same time. The sup-
port for concurrent operations is enhanced by storing the pages belonging to the same
BLOB on multiple storage providers.

Data providers. Data providers physically store and manage the pages generated by WRITE
and APPEND requests. New data providers are free to join and leave the system in a
dynamic way.

The provider manager. The provider manager keeps information about the available data
providers. When entering the system, each new joining provider registers with the
provider manager. The provider manager tells the client to store the generated pages in
the appropriate data providers according to a strategy aiming at global load balancing.

Metadata providers. Metadata providers physically store the metadata, allowing clients to
find the pages corresponding to the various BLOB versions. Metadata providers may
be distributed to allow an efficient concurrent access to metadata.

The version manager. The version manager is the key actor of the system. It registers up-
date requests (APPEND and WRITE), assigning BLOB version numbers to each of
them. The version manager eventually publishes these updates, guaranteeing total
ordering and atomicity.

For each BLOB, the metadata is organized as a distributed segment tree [21], where each
node corresponds to a version and to a page range within that version. Each leaf covers
just one page, recording the information about the data provider where the page is physi-
cally stored. The metadata trees are stored on the metadata providers, which are processes
organized as a distributed hash table [12].

BlobSeer provides versioning support, so as to prevent pages from being overwritten
and to be able to handle highly concurrent WRITE and APPEND operations. For each of
them, only a patch composed of the range of written pages is added to the system, and a
new metadata tree is created. The new metadata tree corresponds to a new version and

4

Metadata Client
| Providers Veladata

Figure 1: BlobSeer Architecture

points to the newly added pages and to the pages from the previous versions that were not
overlapped by the added page range.

The interactions between the entities of BlobSeer are briefly illustrated in Figure 2.

For a WRITE request, the client contacts the provider manager to obtain a list of
providers, one for each page of the BLOB segment that needs to be written. Then, the client
contacts the providers in the list in parallel and requests them to store the pages. Each
provider executes the request and sends an acknowledgment to the client. When the client
has received all the acknowledgments, it contacts the version manager, requesting a new
version number. This version number is then used by the client to generate the correspond-
ing new metadata. After receiving the acknowledgment, the client reports the success to the
version manager.

A READ request begins with the client contacting the version manager to get the version
of the corresponding BLOB. If the specified version is available the client contacts the meta-
data provider to retrieve the metadata associated with the pages of the requested segment
for the requested version. After gathering all the metadata, the client contacts (in parallel)
the data providers that store the corresponding pages.

As far as this report is concerned, an APPEND operation is only a special case of WRITE.
Therefore, we disregard this aspect in the rest of the paper. Everything stated about WRITEs
is also true for APPENDs, unless explicitly specified.

A typical setting of the BlobSeer system involves the deployment of a few hundreds of
provider nodes, each of them storing data in the order of GB, and even tens of GB in the case
of the use of the disk storage for each node. This implies that sizes within the order of TB
can be easily reached for the blobs stored in the system. Furthermore, the typical size for
a page within a blob can be smaller than 1 MB, whence the need to deal with hundreds of
thousands of pages belonging to just one blob.

For this project, we only monitor WRITE operations and we study the impact of clients’

Data Metadata Versioning Provider | Client Data Metadata Versioning Provider
» n L » [
Client Providers Providers Manager Manager ! Providers Providers Manager Manager
J ! datgprovider for pach page?
get latesf§snapshot fersion - ' list of providers —
1
vr i
a L]
T i
read metadita for v i
e L]
neladata repl E
i
read pages i
1
H requesy snapshot vefsion
i 5
[: VW
< :
i write metafiata far vw
' e
' ACKS
! it for i reporfsuccess
all replies ! . ACK
: I
return vr H PEEUFT VAl
i
g

Figure 2: Internal interactions inside BlobSeer: READ(left) and WRITE(right)

behavior upon the normal functioning of the system.

2.2 MonALISA

BlobSeer is a storage system that deals with massive data, which are striped into a huge
number of pages scattered across numerous storage providers. A monitoring tool tuned for
presenting the state of a system like BlobSeer has to cope with two major challenges. On one
side, it has to accommodate the immense number of pages that the system comprises once it
stores several BLOBs. On the other side, the monitoring system has to be able to deal with a
huge amount of monitoring information generated when an application accesses the nodes
that make up the storage service. It is the case when multiple clients simultaneously access
various parts of the stored BLOBs, as they generate a piece of monitoring information for
each page accessed on each provider. MonALISA is suitable for this task, as it is a system
designed to run in grid environments and it proved to be a scalable and reliable system.

The MonALISA (Monitoring Agents in a Large Integrated Services Architecture) [9] sys-
tem is a JINI-based [19], scalable framework of distributed services, which provides the nec-
essary tools for collecting and processing monitoring information. The system is designed as
an ensemble of autonomous multi-threaded, self-describing agent-based subsystems which
are registered as dynamic services, and are able to collaborate and cooperate in performing
a wide range of information gathering and processing tasks. These agents can analyze and
process the information, in a distributed way, to provide optimization decisions in large scale
distributed applications. An agent-based architecture provides the ability to invest the sys-
tem with increasing degrees of intelligence, to reduce complexity and make global systems
manageable in real time. The scalability of the system derives from the use of multithreaded
execution engine to host a variety of loosely coupled self-describing dynamic services or

Clients

By me;g'
service Services

MonALISA
Services

Monitored
Lookup nodes

S e e N NI i i s

Figure 3: The MonALISA Architecture

agents and the ability of each service to register itself and then to be discovered and used
by any other services, or clients that require such information. The system is designed to
easily integrate existing monitoring tools and procedures and to provide this information in
a dynamic, customized, self describing way to any other services or clients.

Its architecture is based on four layers of services, as presented in Figure 3. It com-
plies with the Grid Monitoring Architecture (GMA) [14] proposed by the Global Grid Forum
(GGF) [4], which includes three components: consumers, producers and a directory service.

The first layer corresponds to a network of Lookup Discovery Services that provide dis-
covery and notification mechanisms for all the other services. The second layer is composed
of MonALISA services, the components that perform the data collection tasks. Each Mon-
ALISA service is part of a group and registers itself with a set of Lookup Services, together
with several describing attributes.

The interaction between clients and services is made available through transparent Proxy
services, which represent the third layer in the MonALISA architecture. Every MonALISA
service discovers the Proxy Services by using the discovery mechanism implemented into
the Lookup Services layer, and permanently keeps a TCP connection with each of them. The
top-level layer is represented by the MonALISA clients, which offer an intuitive graphical
interface of the states of the monitored systems. It allows users to subscribe to and to visual-
ize global parameters gathered from multiple MonALISA services. It also provides detailed
tracking of parameters for any individual MonALISA service or component in the entire sys-
tem. Each type of MonALISA client has to connect to the layer of Lookup services in order
to request access to data gathered by one or more specified groups of MonALISA services.
It is then transparently connected to the nearest and less loaded proxy service, which will
forward the data that the client has subscribed to, from all the MonALISA services.

A Monitoring Module within MonALISA is a dynamically loadable unit which executes
a procedure (or runs a script / program or performs SNMP request) to collect a set of pa-
rameters (monitored values) by properly parsing the output of the procedure. In general a
monitoring module is a simple class, which is using a certain procedure to obtain a set of
parameters and report them in a standard format.

Monitoring Modules can be used for pulling data and in this case it is necessary to ex-
ecute them with a predefined frequency (for example a pull module which queries a web
service) or to "install” (it has to run only once) programs which are sending the monitoring
results (via SNMP, UDP or TCP/IP) periodically back to the Monitoring Service. Allow-
ing to dynamically load these modules from a (few) centralized sites when they are needed
makes much easier to keep large monitoring systems updated and to provide new function-
alities dynamically. Users can implement easily any new dedicated modules and use it the
MonALISA framework.

The MonALISA system is a well-suited choice for monitoring a distributed storage sys-
tem, thanks to several features that it provides. First of all, it can monitor both a set of
predefined parameters and various user-defined parameters. This is due to an application
instrumentation library, called ApMon, which enables any application to send monitoring
information to one or more MonALISA services. The monitoring data is sent as UDP data-
gram to one or more hosts running MonALISA services. Applications can periodically re-
port any type of information the user wants to collect, monitor or use in the MonALISA
framework to trigger alarms or activate decision agents. The ApMon implementations are
provided for 5 programming languages: C, C++, Java, Perl and Python.

3 Addressing security issues in BlobSeer

3.1 Security issues in BlobSeer

Part of BlobSeer’s efficiency is enabling high concurrency in parallel writes, on the same or
on different providers. Only metadata writes are serialized, in the case where more clients
are writing the same part of a blob simultaneously. Although this approach enables perfor-
mance gain, it also has a security downside: BlobSeer processes being completely indepen-
dent of each other, the system as a whole has no way of knowing whether their actions are
always consistent with each other, and maintain the system’s integrity.

For instance, if the version manager process is killed for some reason, the provider man-
ager has no way of knowing this, and it will still supply lists of valid providers to clients,
which will write their data to them. Upon completion of the writing on providers, a client
will normally try to contact the version manager in order to publish a version number for
his operation. Since the version manager is unreachable, the publish operation will fail and
cause the whole write to fail. Some replication mechanism of the version manager could be
imagined to prevent this from happening. But in any case where the process could be unre-
sponsive for a while, clients will unwillingly damage the system by loading up the providers
with useless information.

A security issue may be the fact that BlobSeer has no authentication mechanism or any
way of making distinctions between users. Every one of them accesses the blobs in the same
way. Also, from the storage point of view, blob access rights are the same for all the users,
and each user can access any part of a given blob. So if a user want to damage the data
written into a blob by someone else, he has the possibility of doing so.

Also, BlobSeer’s code is open source, and therefore anyone can access and modify it
as they like. In the context of using it in a cloud environment, where BlobSeer is ac-
cessed through the client, there is no way of certifying the users. One could modify the
object_handler component, the client’s interface for accessing BlobSeer, in such a way that
what is reported to the version manager is no longer consistent with what is written to the
providers. Further on, we will refer to this type of malicious users and we will explain how
their behavior can affect the system, and also propose a way for it to be detected in the
shortest time possible.

3.2 Malicious clients

Based on how the code can be modified to create inconsistencies within writes, we have
identified 3 types of such clients:

e WriteNoPublish (WNP) client - it is the client that writes a certain size of data to one or
more providers, but it doesn’t further contact the version manager to publish a version
of what has been written.

e PublishNoWrite (PNW) client - the client that publishes a new version to the version
manager (and writes it into the metadata tree) without actually writing anything to
providers.

o IncorrectWrites (IW) client - a client who writes to providers a different number of
pages than the one it reports to the version manager for versioning.

WNP client: The WNP client’s damaging potential is that if many such clients are running,
they will fill up the providers with useless information that nobody inside the system will
ever know exists. Therefore, a lot of storage space can be wasted as the result of an attack
by such clients. In an extreme case, if all the storage space is filled up, then the providers
will have no more room to store information, and the running BlobSeer service will become
unresponsive. Even so, this type of malicious client is the least dangerous, because it doesn’t
directly affect the functioning of the service’s components, and if neutralized on time its
effects will not be long-term.

PNW client: On the other hand, the PNW client’s effects are experienced right away within
the system. The metadata tree is constructed in such a way that each new version of a blob
is connected by pointers to the previous version. So if a version written by a PNW client will
end up in the metadata tree, and another valid version is then tied to it, a client wanting to
read the latest version of a blob will end up in the following situation: BlobSeer will try to
take the parts of the blob that were not covered by the last write from the previous version,
the one that doesn’t actually have any blob pages associated to it. At this point, the client
will either read incorrect information, or some operations may fail within BlobSeer because
of invalid pointers. One PNW client affects not only one version within BlobSeer, but all of
the following ones too.

IW client: The IW client has the same effect as the PNW client: introducing inconsistent
information within the system. This affects both the versioning system and the storage on
the providers, as the information written during and after such a write cannot be properly
accessed.

We implemented these clients as we have suggested earlier, by modifying the code of the
object_handler of BlobSeer, in the following way: for IW, ensuring that the number of pages
written to a provider is generated randomly, rather than the one reported. For WNP and
PNW we suppressed from the WRITE operation either the part that writes to providers, or
that which writes to the version manager.

3.3 Our approach: Using BlobSeer monitoring in user activity history

In order to prevent such attacks or inconsistencies, multiple security strategies can be en-
visioned. One solution would be that the version manager checks with the providers for
the validity of a read before publishing, but that would be a huge performance overhead.
The WRITE operation could also be modified to time-out if after a certain number of pages
written no version is published.

In order to preserve as much of the initial performance, our approach consists of creating
a monitoring system, independent of BlobSeer, which gathers information about its com-
ponents and computes a history of user activity in the system. This can then be used for
multiple purposes, including making some security decisions.

10

A system using a BlobSeer deployment can have hundreds or thousands of data
providers and lots of clients accessing the data concurrently. Monitoring the behavior of
the system, as well as monitoring the clients, is a challenging task. In our approach, the
version manager and each provider send monitoring data to the MonALISA system. This is
done by additional monitoring infrastructures, for instance, listeners. The monitoring data
is collected by the MonALISA services and then forwarded to a distributed processing sys-
tem. Our goal is to run the monitoring system in parallel with BlobSeer and monitor its
clients” activity in real time. The system will maintain a list of malicious users updated pe-
riodically. This list could be fed back to BlobSeer, more specifically to the provider manager.
In this way, if a malicious client tries to contact the provider manager, in order to get a list
of providers for a new write, he can be denied based on his history. On condition that the
information comes back to BlobSeer fast enough, this can be an efficient implementation of
a security policy.

The user history is computed in the following way: once the write operation is initiated
by a client on a provider (typically for one page), this provider will send to MonALISA in-
formation about the page number, page size, the hostname of the client that initiated the
operation and a timestamp. At the version manager level, information about the client ID,
total size of the write, page size and version number is sent. Actually, because a version
number is not attributed to a write until the end, it cannot be used in the information sent
in real-time by providers. In order to support a connection between the information re-
ported by the two entities, a watermark was associated to each write operation within Blob-
Seer, watermark that is reported by all of the providers and by the version manager. It is
randomly-generated and its only purpose is making the connection between the two. After
the information reaches MonALISA, it is forwarded to a custom processing system consist-
ing of several computing nodes. The number of pages written on the providers by a client
is then compared to the size reported to the version manager (and also checked if the page
sizes correspond). If they match, we consider the write to be a normal operation and if they
don’t, we compare the write sizes and classify it in one of the 3 malicious clients’ categories.

3.4 Contribution: Architecture of the user accounting module
3.4.1 Related work

One of the first examples of an intrusion detection system is Haystack [13]. It defined a range
of values that were considered normal for each feature and if a feature fell outside the normal
range during a session, the score for the subject was raised. Considering the features to be
independent, a probability distribution of the scores was calculated and an alarm was raised
if the score was too large. Haystack also maintained a database of user groups and individual
profiles. If a new user had been detected, a new profile based on restrictions related to
group membership was created. One disadvantage of Haystack was that it was designed to
work offline, because of the statistical analyses it required. Those could not be done on-line
because this would have required high-performance systems. Our distributed monitoring
addresses just the problem of distributing costly processing among nodes. Together with
the filtering of data at the MonALISA level, this allows us to manipulate a large amount of
information in an on-line manner.

Crosbie et al. [3] proposed to apply genetic algorithms to the problem of intrusion de-

11

tection. It is a search technique used to find approximate solutions to optimization and
search problems. Such a search converges to a solution from more than one direction, and
it is based on probabilistic rules instead of deterministic ones. The authors applied multiple
agent technology to detect some network based anomalies, using numerous agents to mon-
itor different network based parameters. Nevertheless, the disadvantage to this approach is
that it was not fast enough, the training process taking long. This makes for one prerequisite
that our system does not support, because the monitoring has to be simultaneous with the
functioning of BlobSeer, and it must start at the same time.

In [1], the authors put forward a distributed architecture with autonomous agents op-
erating independently of each other in order to monitor security-related activity within a
network. They suggest a scheme of escalating levels of alertness, and a way to notify other
agents on other computers in a network of attacks so they can take reactive measures. A
neural network is supposed to measure and determine alert threshold values. The progres-
sive increase in alert levels is costly with respect to detection time, and for a system such
as BlobSeer, a similar approach would not be fast enough. Although this kind of detection
algorithm is more complex, our system requires an almost immediate detection of malicious
actions, in order for its functioning not to be compromised.

3.4.2 Previous work: Bringing introspection to BlobSeer

Our work is based on previous research carried inside the KerData team related to creating
an introspective BlobSeer. In [2], the authors propose a first prototype of such architecture.
It comprises 3 layers aiming at identifying and generating relevant information related to
the state and the behavior of the system, as depicted in Figure 4. Such information is then
expected to serve as an input to a higher-level self-adaptation engine (currently not imple-
mented yet). These data are yielded by an (1) introspection layer, which processes the raw
data collected by a (2) monitoring layer. The lowest layer is represented by the (3) instru-
mentation code that enables BlobSeer to send monitoring data to the upper layers.

The data generated by the instrumentation layer are relayed by the monitoring system
and finally fed to the introspection layer. The instrumentation layer is implemented as a
component of the monitoring layer. The version manager and providers are equipped with
ApMon listeners, in order to monitor the READ and WRITE operations.

The input for the introspective layer consists of raw data that are extracted from the
running nodes of BlobSeer, collected and then stored, a set of operations realized within the
monitoring layer. The main challenge the monitoring layer has to cope with is the large
number of storage provider nodes and therefore the huge number of BLOB pages, versions
and huge BLOB sizes. Furthermore, it has to deal with hundreds of clients that concurrently
access various parts of the stored BLOBs, as they generate a piece of monitoring information
for each page accessed on each provider. MonALISA is suitable for this task, as it is a system
designed for large-scale environments and it proved to be both scalable and reliable.

The introspection layer corresponds to a MonALISA client, the MonALISA repository.
It is the location where the data is stored into a central database and made available to the
introspection layer. At this level, the user can consult various graphical representations con-
cerning the state and the activity within the system.

As a work in progress, a centralized user accounting system is being tested on top of

12

the architecture presented above. The three types of malicious users presented earlier are
computed based on the periodical querying of the repository database. Users with inconsis-
tent activity are selected and attributed a score. A black list is computed periodically and
made available to clients who request it. The downside in this approach is that the central-
ized database is a bottleneck in the functioning of the system, and that data stored is not
structured in the most efficient way for this purpose.

3.4.3 Architecture of the user accounting module

Our work represents an extension of [2]. We have modified the architecture described above
and rewritten the layers, in order to adapt it to a higher degree of distribution in the process-
ing performed on the data. Our system has the following layout, presented in Figure 5 and
has 2 main components:

e The monitoring system, which has 3 layers:

o Instrumentation layer
o Monitoring layer

o Data processing layer

e User accounting module

Such information is then expected to serve as an input to a higher-level self-adaptation
engine, which is to be implemented within BlobSeer, as shown.

__

; Self-adaptation Engine
Self-adaptation Engine [User accounting module]

o

Figure 4: Architecture of the introspective Figure 5: User accounting architecture within
BlobSeer the introspective BlobSeer

The monitoring system is the one handling the collecting and processing of data related
to client activity in BlobSeer. This information can be used in multiple ways, but our
approach uses it for creating a user accounting system. The second module of our
work is one that uses given information about users to compute a history for each
of the clients, determining whether they performed malicious actions and how many
times.

13

The instrumentation layer is the same as the one in Figure 4. As we stated before, we
equip each provider with a listener attached to the WRITE operation, so that when
a client performs this operation, information about the page number, client ID and
page size is sent to MonALISA. On the version manager side, similar information
about a new version of a specific blob is sent using a parser that monitors the
events recorded in the logs. The difference between these two types of listeners is
that for one WRITE we have one version manager message to MonALISA, while
on the provider side we have one for every page written. The state of the physical
resources on each node is monitored through an ApMon thread that periodically
sends data to the monitoring service.

The monitoring layer is represented by MonALISA and the actions taken at this level
about the data collected. We have implemented a filter within MonALISA, cus-
tomizing these actions. Data received by providers is condensed into one data
entry, and further on, both provider and version manager data are sent to a dis-
tributed storage and processing system. Information from a specific client is stat-
ically mapped to be sent each time to the same processing node, ensuring that
there is one node containing the complete information about that user.

The data processing layer could be considered as a distributed introspection layer,
but it also integrates continuous processing of the data available here. It is a sys-
tem that could itself be divided into 3 sub-layers, at each node level. First, there
is one that stores all the data coming from MonALISA into some specific tables,
without any kind of processing of the information. The second one updates a ta-
ble periodically where it tries to condense information from the previous one, by
creating a single entry into a table, with both version manager data and providers’
data. The last sub-layer encapsulates a per-user history updated periodically with
respect to the number of correct and incorrect operations performed.

The user accounting module is located on another node than the ones processing the data.
It gathers data from all the nodes and it attributes a score to each of the clients in the
history. Updates are done periodically. It also allows a client module to connect to it
and request the computed list at any time.

14

4 Distributed monitoring system components

Black list to provider
manager

User accounting
module

Computing
black list of
BlobSeer

provider

’:‘ g processing g“

layer

ﬁ =j =1 =
g

manager r 2

Monitoring data

Figure 6: Distributed monitoring system infrastructure

4.1 Instrumentation layer

BlobSeer is instrumented using the ApMon library. The routines provided by the library
handle the encoding of the monitoring data in the XDR representation and the building and
sending of the UDP datagrams. As shown in Figure 7, the applications can use the API to
send any specific parameter values to one or more MonALISA services.

4.1.1 Provider level

BlobSeer providers have the ability to have listeners attached, so in order to add ApMon
support to BlobSeer, the monitoring_listener class was implemented. Each of the listeners’
update method is called when a read or write operation is performed, and so it is reported
to the monitoring system. The values sent are encoded within a string and separated by the
“#” character, as shown in Figure 9.

The parameters sent are the following: client hostname, timestamp, blob id, MonALISA
farm name, node name, page size, index of the current page within a write and the water-
mark we discussed earlier in this paper.

4.1.2 Version manager level

The version manager is also monitored. An ApMon-based daemon runs in parallel, and
parses its log ?le each time it is updated, in order to report the written page ranges and their

15

Client hostname
Page size
Page index
Timestamp
Blob ID

Client hostname
Page size
Page index
Timestamp
BlobID

Version manager
monitor

Client hostname
Page size
Wrrite size

Version number

Blob 1D

Figure 7: Collecting monitoring data from BlobSeer

#tinclude "ApMon.h"
ApMon xapm = new ApMon(ConfigFile);

apm —> sendParameter("MyParameterGroup", "NodeName",
"MyParameter", XDR REAL64, (char x)&value);

Figure 8: Instrumenting a code with the ApMon Library

associated versions. Whenever this daemon detects that a new blob or version is created,
it sends this information to the MonALISA service it is configured for. In order for this
approach to be consistent, we rely on a specific format of the log file.

The parameters collected from the log and sent are the following: client hostname, times-
tamp, blob id, watermark, blob version, page size, write size and write offset within the blob.

In order to configure ApMon, we need to set the destination hosts to which it will send
data in a special file, in our case, a monitor.conf file, together with some other additional
parameters, such as maximum message rate or the interval between datagrams. MonALISA
also has to have ApMon support enabled (in the <FarmName >.conf properties file), as shown
in Figure 10.

4.2 Monitoring layer - The MonALISA Filter

Once the data we are interested in reaches MonALISA, it has to be processed in a custom
manner, and sent further to a set of specified hosts. This is why we have chosen to imple-

16

ss<<range—>id<<"#"<<range—>offset< <"#"<<range—>version< <"#"
<<params.get<3>()<<"#" <<now;

buf = ss.str();

apmon—>sendParameter("Blob 10", NULL, "provider write", XDR STRING,
const_cast<charx>(buf.c_str()));

Figure 9: Sending monitored parameters on provider side

the ABping module

*ABPing{monABPing, localhost, " "}

“monXDRUDP{ParamTimeout=900,NodeTimeout=900, Cluster Timeout=900,
ListenPort=88841}%20

Figure 10: Enabling ApMon support on MonALISA

ment a filter at its level. A filter is a monitoring module dynamically loadable at service
startup that instantiates some predefined methods when receiving data it is interested in.
Our class is called BsMonFilter, and in order to use it as a MonALISA filter, it has the follow-
ing structure and properties:

o It must extend lia.Monitor.Filters.GenericMLFilter

¢ It must have a constructor with a String param (the FarmName) in which you must
call super(farmName). This constructor is used to dynamically instantiate the filter at
runtime

e Our filter has 4 configuration parameters, that must be set in the ml.properties file of
MonALISA:

o BSMonfFilter.ConfigFile - contains the values of the PREDICATES parameters that
must be set by the user. It specifies a list of predicates to filter a desired set of
results, in the following format: F/C/N/Paramy|Paramy|...|Param,, where:

- F - Farm Name

- C - Cluster Name

- N - Node Name

- Param_x - Param Name

o BSMonFilter.nodeFile - the path to a text file containing the list of nodes to which
the monitoring data will be sent for processing. The format of the file must be

"hostname port" on each line. The filter acts as a client to those nodes and will try
to connect to them on the given port.

o BSMonfFilter.Port - the default port on which to connect to the nodes in the node-
file, in case no port is specified for one or more hosts.

17

o BSMonfFilter.filterTimeout - the delay between sending the monitoring data to pro-
cessing nodes

o The filter must override the following methods:

o public String getName() - returns the Filter name. It is a short name to identify
data sent by the filter in the client. It is also used by MonALISA clients to inform
the Service that they are interested in the data processed by this filter. It must be
unique because all the filters in ML are identified by their name. Our filter’s name
is BsMonFilter.

o public monPredicate[] getFilterPred() - returns a vector of monPredicate(s). These
predicates are used to filter only the interested results that they want to receive
from the entire data flow. If it returns null, the filter will receive all the mon-
itoring information. In our case, because we are only interested in the WRITE
operation, we have set the PREDICATES property in the file specified in BSMon-
Filter.ConfigFile to filter parameters received from any farm and node, in the
group Blob_IO parameter provider_write, and in the group VManager parame-
ter blobWrite: PREDICATES = x/Blob_IO/ * /provider_write; *x/V Manager/ *
/blobWrite

o public void notifyResult(Object o) - This method is called every time a Result
matches a predicate defined above. The Filter could save this in a local buffer
for future analysis, or it can take some real time decision(s)/action(s) if it is a
trigger.

o public Object expressResults() - This method is called from time to time to let the
filter process the data that it has received. It should return a Vector of eResults
classes that will be further sent to all the registered clients, or null if no data should
be sent to Clients.

o public long getSleepTime() - returns a time(in milliseconds) for how often express-
Results() should be called. In our case, it returns the value configured in the
ml.properties file.

e In the ml.properties file, the path to the directory where the filter has its .class file
must be added. The parameter that must be defined is lia.Monitor. CLASSURLs, and if
there are more filters/directories they have to be separated by commas. The trailing
"/" on the end of each of the paths is essential; the class will fail to load without it.
lia.Monitor.CLASSURLs = file : ${ path to BsMonFilter.class file}/

e Also, in the ml.properties one must specify what filters should be loaded:
lia.Monitor.ExternalFilters = processing.filters. BS MonFilter

Our filter does the following;:

e First, it loads its configuration from the required parameters. It initializes the vari-
ables specified the ml.properties file, it reads the list of nodes from the nodefile, and it
initializes the parsing predicates values.

e Based on the predicates we defined, it receives only the strings of data that we are
sending from the BlobSeer entities.

18

e Within the notifyResult method, results are parsed and are stored within special
data classes until the timeout for the expressResults method expires. In case several
provider pages of the same write arrive before an expressResults is called, the pages
are aggregated within a same data class.

e When the timeout expires, all the data kept in the cache is sent to the configured nodes,
attributing each new client a node - using an algorithm that has the same results on
each MonALISA node. In this way, data coming from one client is always sent to the
same node, in a serialized manner. All of the MonALISA services used within the
deployment must be configured in the same way (same configuration file).

4.3 Data processing layer

The data processing layer is itself structured into 3 sub-layers, each with specific roles within
the system. We use this 3-step processing to both store the data we receive from MonAL-
ISA and to process it extracting information related to the behavior of the clients within the
system.

First, we handle storing all the data that we receive. This can be used further in any
kind of situation where we need information about BlobSeer operations and client activity
related to those. Next, we introduced an intermediate layer that summarizes the information
received previously. The results are also stored into the database, in a single table on each
node. The final layer summarizes the number and type of operations per each user. This
is the final abstraction we use about user activity, and the information held here are used
further within the user accounting module.

To user accounting module

4 Data processing node

Adding new data to the client history

4 o
Client summary data

Summarizing received data

4 4

Monitoring data

Storing monitoring data

Figure 11: Architecture of a data processing node

19

4.3.1 Storing monitoring data

For each node, the components of the first layer, which stores all the data received, are the

following:

e The database stored on each node
¢ A running Java Nio Server

e The process that updates entries in the database

Database
update thread

i "I

Database

rver

vmanager_writes_client provider_writes_client_<clientlD>
Table Tables

Figure 12: Data processing layer 1 - Storing data components

Database On each node, we have one running Postgres database server. The database

contains the following tables:

o vmanager_writes_client - this table is created one per node. It contains all the data re-
ceived from the version manager monitoring side. We have chosen this approach be-
cause the data sent for each client write consists in maximum one entry in the table (no
entry in case of a WNP malicious client). In this way, we consider the amount of data
can be of a reasonable size such as to fit without significant performance impact into

one table. The structure of the table is as follows:

client_id blob_id version watermark blob_offset write_size page_size timestamp
127.0.0.1 1 148 1250216125 0 1024 1024 1263136394497
127.0.0.1 1 149 1338336333 0 2048 1024 1263136554517
127.0.0.1 1 151 3234340499 0 1024 1024 1263136786556

Table 1: vmanager_writes_client table layout

20

o summary_table - this table is used in the next level of processing and we will discuss it
there

o provider_writes_client_<clientID> - this table is created one per each client. It contains
data received on the node about a certain client’s writes on providers. We have chosen
this approach because the number of pages within a write can be significant, and per-
forming several writes by the same client has the potential to generate a large number
of entries that need to be stored in the database. From the point of view of querying
the database, it is more efficient to have this amount of information already grouped
by some criteria (in our case, one table per client ID) rather than storing it in a single
table. Querying several smaller tables is more efficient than retrieving it from one huge
one. The structure of the table is as follows:

blob_id timestamp farm node watermark page_index page_number page_size
1 1263136275142 Michi-IRISA paralapeche 1372071065 0 1 1024
1 1263136534513 Michi-IRISA paralapeche 3830431616 0 1 1024
1 1263138869310 Michi-IRISA paralapeche 1201352078 0 1 1024
1 1263138969259 Michi-IRISA paralapeche 227310002 0 2 1024
Table 2: provider_writes_client_<clientID> table layout
Nio Server The server is a Java process using features of the NIO (non-blocking I/0) li-

brary. It runs on a separate thread and it listens for connections on a user-specified port.
Its implementation is based on the NIO tutorial located at http://rox-xmlrpc.sourceforge.net/
niotut/ . The connection with the servers on the nodes is initiated by the MonALISA filter.
Once the server accepts a connection and receives data on it, the request type is parsed and
action is taken accordingly. Figure ?? shows the class diagram illustrating the interactions in
which the server class takes part. There are 2 request types that we accept:

e Process monitoring data - upon receiving such a request, the server passes it to the
1st layer processing thread. Data is deserialized and put into a queue, from where the
thread picks it up. This kind of request doesn’t receive a response from the server.

o Gather user information - this request is served by the final processing layer, and it
sends the list containing the summary information computed up to that point about
each client’s activity.

Processing thread The processing thread removes data from the server queue, and de-
pending on its type, it inserts it into one of the tables described above. It also keeps a list of
the updated clients, where it inserts client IDs whose information has been added into the
database, and the timestamp at which the update was performed. This way, the next layer
thread can only run its processing only on clients whose information has been updated, se-
lecting the corresponding entries from the database.

21

4.3.2 Creating a summary of received monitoring data

The next step in obtaining the user activity information for user accounting is creating a sum-
mary of the large amount of information we expect to receive and store in the previous step.
We need this because we finally want to obtain a small amount of information associated
with each client, but that will characterize entirely its activity within BlobSeer.

The summary thread works as a timer task, executing its run() method at a specified time
interval. Based on the updated clients cache collected within the previous step, we select
the new entries inserted into the database for those specific client IDs. We keep a reference
timestamp that we update for every timer tick. Because we run all the processing threads
on the same node, the time reference will be the same, and we can compare the current
timestamps with those in the table entries. Once the new information is obtained, we iterate
through it and create one single entry per client write, comprising both provider data (all
the pages that arrived from that write until that timestamp) and version manager data. This
doesn’t mean that we will only have one table entry per write, as some of the write data
(such as part of the pages or version information) might arrive at a later time than other
ones, and the timer interval might expire in the process. In a write-intensive scenario this
kind of behavior is actually to be expected.

Within this thread, the summary_table information is filled. Its layout is the following:

client_id timestamp blob_id watermark provider_pages write_size_vman page_size
127.0.0.1 1263136281634 1 1372071065 1 0 1024
127.0.0.1 1263136401665 1 1250216125 2 2048 1024
127.0.0.1 1263136541695 1 3830431616 1 0 1024

Table 3: summary_table layout

A schematic of the interactions taking place at this level is depicted in Figure 13.

4.3.3 Computing client history

Our final layer abstracts into more general user activity information the data contained up
to that point about a user in the system. This thread also has a timer attached, running
periodically and each time updating a cache containing information about all the clients
whose data is stored on the node.

The cache data associated with a client has the following entries:

Number of IW writes

Number of PNW writes

Number of WNP writes

Number of normal operations performed by the client

Before information new information is added to the cache, every operation is put on hold
for a preconfigured period of time. We do this in case more information about that same

22

Tables

[vmanager_writes_clientJ [provider_wn'tes_client_<c|ientID>J
Table

Summary
thread

storing processed
data

—— o mm mm Em Em Em Em mm Em o
P P S ———————-_

[summary_table]

Figure 13: Data processing layer 2 - Creating a summary of the received data

operation may not arrive to the node all at once. In keeping data about a write pending for
3-5 seconds, we give all the information time to arrive within a reasonable interval and we
prevent a correct operation from being classified as a different type.

The algorithm repeating for each timer tick is the following:

e The timestamp corresponding to the end of the operation are saved

o The entries with a timestamp newer than the last update time are selected from the
summary_table

e For each new WRITE operation:

o In case information some about this WRITE was already in our pending list, we
update the pending entry with the additional information, but keeping the origi-
nal expiry time.

o If the information is not in the pending list, we update its timestamp to know
when it was introduced, and we add it.

e Next, for each operation in the pending list, we check to see if it has expired. If that’s
the case, we check the type of the WRITE based on the size written to providers and
that reported to the version manager: PNW, WNP, IW or a normal operation.

¢ If we already have an entry for this client in our cache, we update it. If we don’t, we
create a new object for the entry associated with this client ID.

23

’ \ Layer3
I \
i Client histot .
Computing new data oo ooy) Start timer
l Waiting
Timer expired operations
cache
Cache of

history

Number of Number of] [Number of] [N:r::::;;:f]]
\\ i P il Operations /l
~

e o e o o o mm mm mm Em m m Em Em e e m m Em m Em m Em Em m Em m = = = = = =

1
1
I
|
I
1
I
|
I
1
1 client
I
1
I
|
I
1
|
\

Figure 14: Data processing layer 3 - How the client history is being computed

In addition to that, it is this level that supplies information about client activity to the
user accounting module. When the NIO server receives a request for collecting client activity
data, it passes it to this thread, which serializes all the cache data and sends them back to the
requester through the server’s send method.

Figure 14 displays a summary of the processing taking place at this level.

4.4 User accounting - Computing malicious clients list

The module computing the malicious users list runs on a separate node, and uses the infor-
mation about BlobSeer clients” activity gathered within the monitoring system. It consists of
2 running threads :

¢ Nio server thread - it is the same as for the distributed processing nodes. Its role is to
listen for connections, to interpret requests and to pass them on to the other thread.

e Timer update thread - it has the role of periodically computing a list of malicious users,
the black list we are interested in for our user accounting actions. This thread also re-
ceives as an argument the list of nodes that store the BlobSeer monitoring information,
the same one that the MonALISA filter uses.

o Every time the timer expires, it tries to connect to each one of them and request
the data contained in each of the caches.

24

o The connection is initiated as blocking, because we need the results at the precise
time we initiate the request, but with a timeout, in case one of the nodes dies or
fails to connect for some reason.

o Asnew data is received, the information is added to a global cache list maintained
at this level.

o After all the nodes are interrogated, we iterate through the computed global
cache, we check each client’s activity and, in case it contains some suspected op-
erations, we add its ID to the black list computed.

25

5 Conclusion

5.1 Contribution

In this paper, we present our approach toward creating an efficient user accounting system
for BlobSeer, based on monitoring. Our solution relies on a distributed architecture, and it
offers an efficient mechanism for both monitoring, storing and processing the data related to
user activity. The user accounting module is independent of the monitoring part, ensuring
that the data received there could also be used for other purposes.

The goals of the paper were to use the set of specific data that can be collected from
BlobSeer, and create a system processing them in an online manner, so as to provide an
almost real-time image of the user activity in the system. We argue that our distributed
processing system has no significant impact on BlobSeer performance and that it can be a
viable alternative in implementing security policies within.

We proposed the use of multiple MonALISA services that share the load of collecting the
data from the providers, and we implemented filters for this data at the service level. This
way, data within a single WRITE is aggregated, in order to reduce in size the network traffic.

Because of the distribution algorithm at the filter level, data about one client is always
sent to the same node. This is essential to the good working of the system; otherwise the
client might be reported as malicious inconsistently. Our 3-layered distributed data process-
ing system is a fast way of compressing and storing the data received.

The module computing the malicious clients is tuned for interacting with the processing
system and gathering information about the clients from all the nodes.

5.2 Future work

The gathered user accounting can be the starting point towards an implementing a self-
adaptation or a security mechanism for BlobSeer. A possible next step would be the im-
plementation of the self-adaptation engine within BlobSeer, in such a way that the users
determined as malicious to be notified to the provider manager. In case it receives further
write requests from such users, it can block them by not returning the list of providers on
which they can write data. We can also use the detection of malicious WRITEs to invalidate
certain blobs or versions affected by such writes.

A more advanced mechanism concerning security within BlobSeer could involve the im-
plementation of access rights on blobs in such a way that only part of the users are credited
to access certain information. Also, we envision that users cand be offered different levels of
quality of service. For example, we could allocate storage space and bandwidth differently
based on a trust level that the user must gain during his activity within the system.

One of the improvements that the current system could benefit from would be a higher
distribution degree of the processing that computes the black lists. The user scores could be
computed in a distributed way, so that the module gathering the data has less computing to
do and that the whole process would take less time.

26

References

[1] Joseph Barrus and Neil C. Rowe. A distributed autonomous-agent network-intrusion
detection and response system. Electronic Notes in Theoretical Computer Science, 63:41-58,
2002.

[2] Alexandra Carpen Amarie, Jing Cai, Luc Bougé, Gabriel Antoniu, and Alexandru
Costan. Monitoring the BlobSeer distributed data-management platform using the
MonALISA framework. Research Report RR-7018, INRIA, 2009.

[3] Mark Crosbie, Gene Spafford, and Prof Gene Spafford. Applying genetic programming
to intrusion detection. In In Proceedings of the AAAI 1995 Fall Symposium series, pages
1-8, 1995.

[4] Global Grid Forum. http://www.ggf.org/.

[5] I Legrand, H. Newman, R. Voicu, et al. MonALISA: An agent based, dynamic service
system to monitor, control and optimize grid based applications. In Computing for High
Energy Physics, Interlaken, Switzerland, 2004.

[6] Alexander Lenk, Markus Klems, Jens Nimis, Stefan Tai, and Thomas Sandholm. What’s
inside the cloud? An architectural map of the cloud landscape. In CLOUD "09: Proceed-
ings of the 2009 ICSE Workshop on Software Engineering Challenges of Cloud Computing,
pages 23-31, Washington, DC, USA, 2009. IEEE Computer Society.

[7] Philip K. Mckinley, Farshad A. Samimi, Jonathan K. Shapiro, and Chiping Tang. Ser-
vice clouds: A distributed infrastructure for constructing autonomic communication

services. Dependable, Autonomic and Secure Computing, 2nd IEEE International Symposium
on, pages 341-348, 2006.

[8] B. Nicolae, G. Antoniu, and L. Bougé. BlobSeer: How to enable efficient versioning for
large object storage under heavy access concurrency. In Data Management in Peer-to-Peer
Systems, St-Petersburg, Russia, 2009.

[9] The MonALISA Project. http://monalisa.cern.ch/.
[10] The Eucalyptus project: http://open.eucalyptus.com/.
[11] The Nimbus project: http://workspace.globus.org/.

[12] Sean Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz, Sylvia Ratnasamy, Scott
Shenker, Ion Stoica, and Harlan Yu. Opendht: a public dht service and its uses. In SIG-
COMM '05: Proceedings of the 2005 conference on Applications, technologies, architectures,
and protocols for computer communications, pages 73-84, New York, NY, USA, 2005. ACM.

[13] S.E.Smaha. Haystack: an intrusion detection system. In IEEE Fourth Aerospace Computer
Security Applications Conference, pages 37-44, Orlando, FL., 1988.

[14] B. Tierney, R. Aydt, D. Gunter, et al. A grid monitoring architecture. Grid Working
Draft GWD-PERFE-16-3, August 2002. http://www.gridforum.org/.

[15] The Amazon Elastic Compute Cloud: http://aws.amazon.com/ec2/.

27

[16] Google App Engine: http://code.google.com/appengine/.
[17] Windows Azure Platform: http://www.microsoft.com/windowsazure/.

[18] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break in
the clouds: towards a cloud definition. SIGCOMM Comput. Commun. Rev., 39(1):50-55,
2009.

[19] Jim Waldo. The Jini architecture for network-centric computing. Communications of the
ACM, 42(7):76-82, 1999.

[20] B. Weber, M.U. Reichert, W. Wild, and S.B. Rinderle. Balancing flexibility and security
in adaptive process management systems. In Proceedings of the OTM Confederated Inter-
national Conferences, CooplS, DOA, and ODBASE 2005, volume 3760 of Lecture Notes in
Computer Science, pages 59-76, Berlin, October 2005. Springer Verlag.

[21] Changxi Zheng, Guobin Shen, Shipeng Li, and Scott Shenker. Distributed segment tree:
Support of range query and cover query over DHT. In 5th Intl. Workshop on Peer-to-Peer
Systems (IPTPS-2006), Santa Barbara, USA, February 2006. Electronic proceedings.

28

