
Context
Assumptions

Approach
Implementation

Results
Conclusions

Towards Efficient VM Management on Clouds

Bogdan Nicolae

University of Rennes 1, France

July 7, 2010

Bogdan Nicolae Towards Efficient VM Management on Clouds 1/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

About me

I PhD Student, 3rd year, KerData Team, IRISA/INRIA Rennes,
France

I Thesis: BlobSeer - A New Vision on Data Management for
Large-Scale, Distributed Systems

I Web: http://blobseer.gforge.inria.fr

I Visiting student: Argonne National Laboratory, USA
I Working with: John Breshnahan, Kate Keahey

Bogdan Nicolae Towards Efficient VM Management on Clouds 2/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Outline

I Context

I Assumptions

I Approach

I Implementation

I Results

I Conclusions

Bogdan Nicolae Towards Efficient VM Management on Clouds 3/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Cloud Computing
Advantages and disadvantages
Distributed applications on clouds

What is cloud computing?

I Computing as utility rather than
capital investment

I Buy electricity rather than buy
generators

I Multiple abstractions: IaaS, PaaS,
SaaS

I IaaS: EC2, Nimbus, Eucalyptus,
OpenNebula

I PaaS: Elastic MapReduce
I SaaS: Google Apps

Bogdan Nicolae Towards Efficient VM Management on Clouds 4/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Cloud Computing
Advantages and disadvantages
Distributed applications on clouds

Why use cloud computing?

I Advantages
I Low entry cost
I Pay only for what you use: CPU time, network traffic, storage

space
I Elasticity
I Rapid deployment: provider cares for configuration, hardware,

etc.

I Disadvantages
I Security
I High costs for long term usage
I Provider lock-in

Bogdan Nicolae Towards Efficient VM Management on Clouds 5/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Cloud Computing
Advantages and disadvantages
Distributed applications on clouds

Distributed applications on clouds

I Typical scenario:
I Hundreds of nodes work in harmony to solve a problem
I Each node runs at least one VM
I VMs are instantiated from a common initial image

I Challenges:
I Efficient propagation of initial image content
I Efficient checkpointing/resume

I Efficiency is:
I High performance
I Low costs: network traffic, storage space

Bogdan Nicolae Towards Efficient VM Management on Clouds 6/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Infrastructure
Access pattern
Contention
Application state

Cloud infrastructure

I Large number of compute nodes
I Locally attached storage
I Limited capacity: hundreds of GB
I Not persistent

I Relatively smaller number of storage nodes
I Dedicated storage devices
I Huge capacity: order of TB
I Persistent

I Communication model: all interconnected

Bogdan Nicolae Towards Efficient VM Management on Clouds 7/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Infrastructure
Access pattern
Contention
Application state

Application access pattern

I T = total image size, r = amount read, w = amount written

1. Boot the VM from a given image
I Read kernel, Read config files, write temporary files
I Pattern: 0 < r << T and 0 < w << T

2. Run user application
I CPU-intensive or uses external storage: 0 < r << T and

0 < w << T
I Read-intensive (e.g. input stored in image): 0 << r < T and

0 < w << T
I Write-intensive (e.g. temp files, log files): 0 < r << T and

0 << w < T

3. Shutdown VM
I r and w are negligible

Bogdan Nicolae Towards Efficient VM Management on Clouds 8/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Infrastructure
Access pattern
Contention
Application state

Concurrent access to the initial contents

I Boot process
I Read same parts in same order on each VM
I Interleaving of CPU-time with I/O time: same parts not read

at exactly same time by two different VMs

I Runtime
I Concurrent access depends on access pattern

I Checkpointing
I Concurrent write access pattern to storage nodes
I Depends on size of local modifications

Bogdan Nicolae Towards Efficient VM Management on Clouds 9/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Infrastructure
Access pattern
Contention
Application state

Checkpointing: How to save application state

I Two possible ways of expressing the application state:
1. Explicitly

I Application saves state as temporary files in the image
I Save only what is needed
I Application resumes from temporary files

2. Implicitly
I Save RAM, CPU registers, sockets, etc. for all images
I Potentially large amount of storage space
I Global state is not the sum of states of all devices of VMs

I For this work: case 1 (state is sum of local modifications to
images)

I However, the presented principles are easily extendable to case
2

Bogdan Nicolae Towards Efficient VM Management on Clouds 10/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

General principles
Architecture
Mirroring details
Advantages

Mirror image contents locally

I Trap reads and writes
I Copy-on-reference (COR), first

time reads do:
I Fetch contents from storage

nodes
I Store contents locally

I Writes and reads on already
accessed regions are served locally

Bogdan Nicolae Towards Efficient VM Management on Clouds 11/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

General principles
Architecture
Mirroring details
Advantages

Store initial image contents in a distributed fashion

I Split image into small,
equally-sized chunks

I Distribute chunks among storage
space providers: distribute I/O
workload under concurrency

I Chunk size tradeoff:
I Too small: long metadata

lookup, network overhead
I Too large: false sharing, large

transfers, high latency

Bogdan Nicolae Towards Efficient VM Management on Clouds 12/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

General principles
Architecture
Mirroring details
Advantages

Checkpointing: consolidate local modifications into fully
independent images

I Each VM instance has its own
local modifications

I On checkpointing, save to
repository for each VM local
modifications only

I Offer the illusion that a fully
independent image is actually
stored

I Two control primitives:
I CLONE
I COMMIT

Bogdan Nicolae Towards Efficient VM Management on Clouds 13/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

General principles
Architecture
Mirroring details
Advantages

Architecture

Bogdan Nicolae Towards Efficient VM Management on Clouds 14/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

General principles
Architecture
Mirroring details
Advantages

Mirroring algorithm

I Considerations
I Too many small remote reads:

low throughput
I Too many small sparse writes:

fragmentation

I Algorithm
I Hold for each chunk n, such

that (0, n) is the largest locally
available subsequence

I On write, fetch remote part to
fill the gap and adjust n

I On read, fetch full chunks only

Bogdan Nicolae Towards Efficient VM Management on Clouds 15/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

General principles
Architecture
Mirroring details
Advantages

Advantages

I Fault tolerance
I A failure on one compute node does not affect other compute

nodes
I Not the case with multicast propagation

I Compatible versioning support
I Different custom incompatible image formats: AMI, OVF,

QCOW2
I Most hypervisors support RAW format, but it has no

versioning support
I Can consolidate local modifications into fully independent

RAW virtual images
I Enables easy migration from one hypervisor to another

Bogdan Nicolae Towards Efficient VM Management on Clouds 16/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

BlobSeer
FUSE
Putting everything together

Overview

I BlobSeer used to store images and consolidate local
modifications

I Runs on the storage nodes

I Mirroring implemented as a FUSE module
I Runs on the compute nodes

Bogdan Nicolae Towards Efficient VM Management on Clouds 17/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

BlobSeer
FUSE
Putting everything together

What is BlobSeer?

I Versioning data storage service for distributed applications
I Huge BLOBs (order of TB)
I Fine grain concurrent access (as low as KB order)
I Cheap versioning and instant cloning
I High throughput under concurrency
I Cheap replication and fault tolerance

I Access interface
I id = CREATE()
I v = APPEND(id, size, buffer)
I v = WRITE(id, offset, size, buffer)
I READ(id, v, offset, size, buffer)
I (v, size) = GET RECENT(id)
I new id = CLONE(id, v)

Bogdan Nicolae Towards Efficient VM Management on Clouds 18/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

BlobSeer
FUSE
Putting everything together

BlobSeer: Architecture

I Principles
I Data striping
I Distributed metadata

management
I Versioning based

concurrency control

I Actors
I Data providers
I Metadata providers
I Provider manager

I Allocation strategy

I Version manager
I Version assignment

and publication

Bogdan Nicolae Towards Efficient VM Management on Clouds 19/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

BlobSeer
FUSE
Putting everything together

BlobSeer: How does a read work?

1. Optionally ask the version
manager for the latest published
version

2. Fetch the corresponding metadata
from the metadata providers

3. Contact providers in parallel and
fetch the chunks into the local
buffer

Bogdan Nicolae Towards Efficient VM Management on Clouds 20/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

BlobSeer
FUSE
Putting everything together

BlobSeer: How does a write work?

1. Get a list of providers that are
able to store the pages, one for
each page

2. Contact providers in parallel and
write the chunks

3. Get a version number for the
update

4. Add new metadata to consolidate
the new version

5. Report the new version is ready
for publication

Bogdan Nicolae Towards Efficient VM Management on Clouds 21/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

BlobSeer
FUSE
Putting everything together

BlobSeer: Concurrent writes

I Chunks are written
concurrently by the clients

I Versions are assigned in the
order the clients finish writing

I Metadata is written
concurrently by the clients

I Versions are published in the
order they were assigned

Bogdan Nicolae Towards Efficient VM Management on Clouds 22/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

BlobSeer
FUSE
Putting everything together

BlobSeer: Zoom on metadata management

I Distributed Segment Tree
I Each node holds

versioning information
I Write/Append: build

nodes up to the root
I Read: descent from the

root towards the leaves

Bogdan Nicolae Towards Efficient VM Management on Clouds 23/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

BlobSeer
FUSE
Putting everything together

Concurrent writes: Example (1)

I Initial version: white(v1), two
concurrent writers: gray and black

I Gray is first to ask for version
number (v2), black follows (v3)

I Metadata written concurrently:
black is faster, needs to link to B2

I B2 does not exist yet, it is a
metadata forward reference

I Gray finishes writing metadata

I Metadata is now consistent, both
v2 and v3 are published

Bogdan Nicolae Towards Efficient VM Management on Clouds 24/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

BlobSeer
FUSE
Putting everything together

Concurrent writes: Example (2)

I Initial version: white(v1), two
concurrent writers: gray and black

I Gray is first to ask for version
number (v2), black follows (v3)

I Metadata written concurrently:
black is faster, needs to link to B2

I B2 does not exist yet, it is a
metadata forward reference

I Gray finishes writing metadata

I Metadata is now consistent, both
v2 and v3 are published

Bogdan Nicolae Towards Efficient VM Management on Clouds 25/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

BlobSeer
FUSE
Putting everything together

Concurrent writes: Example (3)

I Initial version: white(v1), two
concurrent writers: gray and black

I Gray is first to ask for version
number (v2), black follows (v3)

I Metadata written concurrently:
black is faster, needs to link to B2

I B2 does not exist yet, it is a
metadata forward reference

I Gray finishes writing metadata

I Metadata is now consistent, both
v2 and v3 are published

Bogdan Nicolae Towards Efficient VM Management on Clouds 26/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

BlobSeer
FUSE
Putting everything together

FUSE: File System in Userspace

I Bridge from userspace to kernel
file system interfaces

I Advantages
I Create file systems without

editing kernel code
I Access storage devices and

services in a standard POSIX
fashion

I Benefit from kernel VFS
optimizations

I Disadvantages
I Context switch overhead

Bogdan Nicolae Towards Efficient VM Management on Clouds 27/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

BlobSeer
FUSE
Putting everything together

Putting everything together (1)

I Expose BLOBs stored in BlobSeer as regular files through
FUSE

I Two-level namespace: /blob id/blob version

I On open, create a sparse local file corresponding to the BLOB
I On read/write apply mirroring algorithm

I Map local file into RAM using mmap
I No explicit read/writes to local file

I On close, save internal state (list of modified chunks, etc.)

I On reopen, reload internal state

Bogdan Nicolae Towards Efficient VM Management on Clouds 28/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

BlobSeer
FUSE
Putting everything together

Putting everything together (2)

I Implement CLONE and COMMIT as IOCTLs
I CLONE

I Call BlobSeer CLONE primitive
I Reassign local file and internal state to new BLOB

I COMMIT
I Consult list of chunks that have local modifications
I Group together consecutive modified chunks into a single

BlobSeer WRITE
I Clear list of chunks that have local modifications

Bogdan Nicolae Towards Efficient VM Management on Clouds 29/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Experimental setup
Boot performance
Full read performance
Benchmarks
Real application performance: Monte-Carlo PI approx

Infrastructure

I Grid’5000 experimental testbed
I 9 sites all over France
I For this work: Nancy cluster
I 200 nodes: x86 64, min. 2GB RAM, 120 GB local disk

I Virtual image characteristics
I Size: 2GB, RAW
I Distribution: Debian Sid, x86 64

Bogdan Nicolae Towards Efficient VM Management on Clouds 30/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Experimental setup
Boot performance
Full read performance
Benchmarks
Real application performance: Monte-Carlo PI approx

Methodology (1)

I Simultaneous deployment of VMs
I 150 compute nodes
I 50 storage nodes

I VM parameters
I Ti : Initialization time
I Te : Execution time
I Tt : Total execution time
I Nt : Total network traffic

I Relevant in our context
I AVG (Te)
I Tt

I Nt

Bogdan Nicolae Towards Efficient VM Management on Clouds 31/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Experimental setup
Boot performance
Full read performance
Benchmarks
Real application performance: Monte-Carlo PI approx

Methodology (2)

I Two approaches evaluated
I Our approach

I Ti = time to mount FUSE module locally

I Full local pre-propagation: TakTuk
I Ti = time to receive the full copy
I Propagation through multicast tree
I Dynamically adjusts tree for optimal latency/bandwidth

tradeoff
I Seeding source: NFS server

I Gradually increase the number of VMs deployed
simultaneously

Bogdan Nicolae Towards Efficient VM Management on Clouds 32/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Experimental setup
Boot performance
Full read performance
Benchmarks
Real application performance: Monte-Carlo PI approx

Average time to boot/instance

Bogdan Nicolae Towards Efficient VM Management on Clouds 33/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Experimental setup
Boot performance
Full read performance
Benchmarks
Real application performance: Monte-Carlo PI approx

Total time to boot all instances

Bogdan Nicolae Towards Efficient VM Management on Clouds 34/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Experimental setup
Boot performance
Full read performance
Benchmarks
Real application performance: Monte-Carlo PI approx

Speedup: boot all instances

Bogdan Nicolae Towards Efficient VM Management on Clouds 35/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Experimental setup
Boot performance
Full read performance
Benchmarks
Real application performance: Monte-Carlo PI approx

Total network traffic

Bogdan Nicolae Towards Efficient VM Management on Clouds 36/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Experimental setup
Boot performance
Full read performance
Benchmarks
Real application performance: Monte-Carlo PI approx

Average boot and full read time/instance

Bogdan Nicolae Towards Efficient VM Management on Clouds 37/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Experimental setup
Boot performance
Full read performance
Benchmarks
Real application performance: Monte-Carlo PI approx

Total time to boot and fully read all instances

Bogdan Nicolae Towards Efficient VM Management on Clouds 38/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Experimental setup
Boot performance
Full read performance
Benchmarks
Real application performance: Monte-Carlo PI approx

Speedup: boot and fully read all instances

Bogdan Nicolae Towards Efficient VM Management on Clouds 39/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Experimental setup
Boot performance
Full read performance
Benchmarks
Real application performance: Monte-Carlo PI approx

Bonnie++: Throughput

I Single instance, write intensive scenario

I Reads back written data

Bogdan Nicolae Towards Efficient VM Management on Clouds 40/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Experimental setup
Boot performance
Full read performance
Benchmarks
Real application performance: Monte-Carlo PI approx

Bonnie++: Number of operations/s

Bogdan Nicolae Towards Efficient VM Management on Clouds 41/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Experimental setup
Boot performance
Full read performance
Benchmarks
Real application performance: Monte-Carlo PI approx

Checkpointing performance: Speed

I 100 instances are booted and a temp file is created (1MB).

I all local modifications are saved simultaneously.

Bogdan Nicolae Towards Efficient VM Management on Clouds 42/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Experimental setup
Boot performance
Full read performance
Benchmarks
Real application performance: Monte-Carlo PI approx

Checkpointing performance: Space

Bogdan Nicolae Towards Efficient VM Management on Clouds 43/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Experimental setup
Boot performance
Full read performance
Benchmarks
Real application performance: Monte-Carlo PI approx

Real application performance: Monte-Carlo PI approx

I Embarassingly parallel problem

I 100 instances, 1/5/10 iterations
I 3 experiments

I Run uninterrupted using our approach
I Run using our approach:

I Checkpoint all, suspend all, resume all after 5mins
I Each instance resumes on a different node

I Run uninterrupted after TakTuk propagation

Bogdan Nicolae Towards Efficient VM Management on Clouds 44/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Experimental setup
Boot performance
Full read performance
Benchmarks
Real application performance: Monte-Carlo PI approx

Monte-Carlo PI approx results

Bogdan Nicolae Towards Efficient VM Management on Clouds 45/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Conclusions
Future work
Research directions

Conclusions

I Addressed two difficult challenges
I VM image content propagation to multiple instances
I Efficient checkpointing/resume

I Important advantages
I Fault tolerance
I Inter-hypervisor compatibility
I Works with even with no replication

I Encouraging results
I Boot speedup up to 30x
I Full read speedup up to 5x
I Write speedup up to 2x
I Checkpointing 150 instances takes less than 4s
I Real life application benefits

Bogdan Nicolae Towards Efficient VM Management on Clouds 46/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Conclusions
Future work
Research directions

Future work

I More experiments
I Chunk size, Image size
I Applications
I LAN vs. WAN
I Replication

I Access pattern prediction
I Access pattern feed-back from instances
I Prefetch according to feed-back

I Integration in Nimbus

Bogdan Nicolae Towards Efficient VM Management on Clouds 47/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Conclusions
Future work
Research directions

Acknowledgements

I Gabriel Antoniu, Luc Bougé: KerData, INRIA/ENS Cachan,
Rennes, France

I Diana Moise, Tran Viet-Trung, Alexandra Carpen-Amarie:
INRIA/Univ of Rennes 1/ENS Cachan, France

I Jesús Montes, Maŕıa Pérez, Alberto Sánchez: Univ.
Politecnica de Madrid, Spain

I John Breshnahan, Kate Keahey, David LaBissoniere, Tim
Freeman: Univ of Chicago/Argonne National Lab, USA

I Matthieu Dorier, Franck Capello, Marc Snir: INRIA/UIUC
joint Lab, USA

I Osamu Tatebe: Univ. of Tsukuba, Japan

Bogdan Nicolae Towards Efficient VM Management on Clouds 48/ 49



Context
Assumptions

Approach
Implementation

Results
Conclusions

Conclusions
Future work
Research directions

Research directions

I Cost-effective storage in clouds
I VMM management
I Shared virtual storage
I Quality of service guarantees
I Dynamically adapt to prices
I Cheap (i.e. price) versioning: garbage collection, etc.

I High performance storage for HPC
I Exploit versioning to improve application workflow parallelism
I High throughput under heavy access concurrency
I High level I/O access over BlobSeer: MPI-IO, PHDF5, etc.

I Specialized storage for new paradigms
I MapReduce, Dryad, etc.

Bogdan Nicolae Towards Efficient VM Management on Clouds 49/ 49


	Context
	Cloud Computing
	Advantages and disadvantages
	Distributed applications on clouds

	Assumptions
	Infrastructure
	Access pattern
	Contention
	Application state

	Approach
	General principles
	Architecture
	Mirroring details
	Advantages

	Implementation
	BlobSeer
	FUSE
	Putting everything together

	Results
	Experimental setup
	Boot performance
	Full read performance
	Benchmarks
	Real application performance: Monte-Carlo PI approx

	Conclusions
	Conclusions
	Future work
	Research directions


