WEST UNIVERSITY OF TIMISOARA

Elastic MapReduce in cloud
federations

Scientific advisors:
Ph.D. Stud. Pierre RITEAU
Prof. Dr. Dana PETCU

Student:
Ancuta IORDACHE

Abstract

Amazon Elastic MapReduce is a web service for processing large datasets
efficiently. It enables the users to write MapReduce applications without
having to deal with networking, hardware, instance provisioning, Hadoop
configuration and health monitoring. In this way, they are allowed to focus
more on the problem to solve. An important limitation of this service is
the usage of computing resources provided only by Amazon datacenters at a
certain cost.

The goal of this thesis was the creation of a service that provides the same
functionalities as Amazon Elastic MapReduce using resources from multiple
clouds. In the same time it offers more flexibility as users can choose between
different types of virtual machines, operating systems or hadoop versions.

The paper presents the technologies leveraged by our system, followed
by a description of the implementation, evaluation results, comparisons with
Amazon EMR and improvements that can be done to it.

Contents

1 Introduction

1.1 Cloud Computing overview . . .
1.2 Related technologies
1.3 Paper objectives.
2 State of the art
2.1 Architecture
2.1.1 Layered model
2.1.2 Business model
2.1.3 Deployment models . . .
2.2 MapReduce overview
2.2.1 Programming Model . .
2.2.2 MapReduce Framework .
2.3 Hadoop
2.3.1 Hadoop Core
2.3.2 Hadoop HDFS
2.3.3 Hadoop MapReduce . .
3 Amazon Web Services
3.1 Amazon EC2
32 S3 ..
3.3 Amazon EMR

4 Problem statement

5 Architecture and implementation
5.1 Arhitectural overview of Resilin

5.2 Using Resilin
5.2.1 Creating a Jobflow . . .
5.2.2 View Jobflows Details .
5.2.3 Terminate a Jobflow . .

5.2.4 Hadoop cluster resizing 27

Evaluation 29
6.1 Deployment Time 29
6.2 Execution Time 30
Conclusion 33

Chapter 1

Introduction

1.1 Cloud Computing overview

As a new model derived from grid computing, distributed computing and
parallel computing, cloud computing represents the next step in the internet
evolution. Nowadays, when searching information on internet or accessing
the email, we are using the processing power that relies in a distant loca-
tion. In fact, even the most basic computer applications require an internet
connection to do simple tasks.

The cloud is providing an extension of the user’s machine as long as there
exists an internet connection, the users have no worries about the processing
power or storage requiered by the application, these being provided by data
centers. Two of the most significant advantages of this model are the ease-
of-use and the cost-effectivenes. The access to the cloud takes place using
web browsing capable devices: laptops, desktops, smartphones,PDAs, pad
computers etc.

The term of utility computing was mentioned for the first time in 1960
by John McCarthy as ”computation may someday be organized as a public
utility” thus underlying the concept of cloud computing. The ’cloud’ term
was used later in 1990 when describing the large Asynchronous Transfer Mode
(ATM) networks. Nowadays, because of the lack of a standard definition,
there is a fair amount of confusion regarding cloud computing. One of the
definitions that covers all the aspects of cloud computing is the one provided
by NIST:

”Cloud computing is a model for enabling convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned

and released with minimal management effort or service provider interac-
tion.”
The main characteristics of the cloud can be extracted from this definition

e self-service provisioning and automatic deprovisioning when the re-
sources requirements exceed the provider ones;

e broad network access - accessible from anywhere, from any standardized
platform (i.e. desktop computers, mobile devices, etc.)

e resource pooling - the computing resources in the cloud are shared thus
numerous clients may be using the same set of resources at the same
time.

e clasticity - refers to the users ability to add or remove infrastructures
resources based on their needs;

e measured service - the cloud provider is measuring the amount of ser-
vice provided and reacting accordingly (both in terms of billing the
client, and updating hardware and software as appropriate)

As the client requires more capacity,he can just buy more storage and com-
puting nodes from another service provider, such that only the consumption
is payed, which is cheaper than having to buy and configure all the needed
equipment. While the on-demand provisioning capabilities of cloud services
eliminates many time delays, there is still a delay as the needs and require-
ments are determined before capability is automatically provisioned.

Cloud Computing is a support of ”everything as a service” (XaaS). The
cloud provides means such that everything, from computing power to com-
puting infrastructure, applications, business processes to personal collabora-
tion, can be delivered over the Internet (either as separate components or a
complete platform) based on user demand.

The emergence of cloud computing has made a tremendous impact on the
Information Technology (IT) industry over the past few years, where large
companies such as Google, Amazon and Microsoft strive to provide more
powerful, reliable and cost-efficient cloud platforms, and business enterprises
seek to reshape their business models to gain benefit from this new paradigm.

1.2 Related technologies

Cloud computing model evolved due to the development of the following
technologies, with which it shares some aspects:

4

e grid computing - distributed computing paradigm that coordinates net-
worked resources to achieve a common computational objective.The use
of distributed resources is the common characteristic but cloud com-
puting is leveraging virtualization technologies at multiple levels (hard-
ware and application platform) to realize resource sharing and dynamic
resource provisioning;

e utility computing - computing resources like applications, infrastruc-
ture and storage are packaged and sold as a service, with users paying
only for what they consume, like electricity.

e virtualization - defined as using computer resources to imitate other
computer resources or even whole computers. The term is very broad
and can include virtualizing everything from memory to software.

1.3 Paper objectives

The goal of this thesis is the implementation of a service that will provide
the same functionalities as Amazon Elastic MapReduce but on top of multiple
clouds. The service will be in charge of requesting resources from multiple
clouds, deploying a MapReduce application and tracking its status. In the
remainder of this paper, there will be a description of the cloud computing
architecture, the related technologies, the key features and characteristics of
it, followed by the description of our application architecture, implementation
and evaluation.

Chapter 2

State of the art

2.1 Architecture

The main factors that determined the evolution of cloud computing are
the virtualisation technology, the development of universal high-speed band-
width, and universal software interoperability standards.

2.1.1 Layered model

The cloud architecture can be split in 5 layers :

e servers layer - represented by the physical resources of the cloud: phys-
ical servers, routers, switches, power and cooling systems.It is typi-
cally implemented in data centers which usually contain thousands of
servers that are organized in racks and interconnected through switches,
routers or other fabrics. Typical issues at hardware layer include hard-
ware configuration, fault-tolerance, traffic management, power and cool-
ing resource management.

e infrastructure layer - virtualization layer, the infrastructure layer cre-
ates a pool of storage and computing resources by partitioning the
physical resources using virtualization technologies such as Xen, KVM
and VMware. The power and performance of commodity x86 hard-
ware continues to increase. Processors are faster than ever, support
more memory than ever, and the latest multi - core processors literally
enable single systems to perform multiple tasks simultaneously. Virtu-
alization provides an excellent way of getting the most out of existing
hardware while reducing many other IT costs.

e platform layer -built on top of the infrastructure layer, the platform
layer consists of operating systems and application frameworks. The
purpose of the platform layer is to minimize the burden of deploying
applications directly into VM containers. For example, Google App
Engine operates at the platform layer to provide API support for im-
plementing storage, database and business logic of typical web appli-
cations.

e application layer - consists of the actual cloud applications. Differ-
ent from traditional applications, cloud applications can leverage the
automatic-scaling feature to achieve better performance, availability
and lower operating cost.

e client layer - computer hardware and/or software used to access the
cloud applications. Eg: laptopd, smartphones, browsers.

An architecture overview is presented in the image above:

I,

Servers

Application

= @
Collaboration L,/— =
Content Communic ation

Platform

S ELJ -
Queue
Object Storage Runtime Database

Infrastructure

Desktops

Monitoring
Anance

) = e
Compute u} Network

Block St
lock Storage Tblets

Cloud Computing

2.1.2 Business model

Each layer presented in the previous section can be implemented as a
service to the layer above. Practically, clouds offer three categories of services:

e Infrastructure as a Service (IaaS) -refers to on-demand provisioning of
infrastructural resources, usually in terms of VMs. The cloud owner

7

who offers TaaS is called an TaaS provider. Examples of [aaS providers
include Amazon EC2, GoGrid etc.

e Platform as a Service (PaaS) - level offering virtualised servers on
which users can run existing applications or develop new ones with-
out which having to worry about maintaining Operating system,Load
Balancing or Computing Capacity;PaaS vendors provide API or devel-
opment platforms to create and run applications in cloud;Examples of
PaaS providers include Google App Engine, Microsoft Windows Azure

e Software as a Service (Saas) - level offering applications over the Inter-
net as a service. Examples of SaaS providers include Salesforce.com,
Rackspace, etc.

2.1.3 Deployment models

According to NIST, there are 4 types of clouds : private clouds, public
clouds, hibrid clouds and community clouds.

-~ =

——
I
- ™ I
Private/ iy e R
Intemal | “'“-—-f.‘:‘ I\..,_ _Ff,-'
I} L -I'_
< The Cluud\ (
A .

_— -

On Premises J Internal O Premises [Third Party

Cloud Computing T ypes

CC- IY-5A 10 by Sem johrmion

In public clouds, service providers offer their resources as services to the
general public, some of the most popular are Amazon and Google apps.

In private clouds,a proprietary network or a data center supplies hosted
services to a limited number of people. A private cloud may be built and
managed by the organization or by external providers. A private cloud offers
the highest degree of control over performance, reliability and security.

A hybrid cloud infrastructure is a combination of public and private cloud
models connected by a standard technology that provides data and applica-
tion portability.

A community cloud infrastructure is shared by several organisations with
common concerns. This type of cloud has more users than a private cloud
but less than a public one.

2.2 MapReduce overview

2.2.1 Programming Model

MapReduce is a new programming paradigm presented by Google in 2004,
for the processing of huge datasets on large commodity clusters. All the
computation problems that it applies to, can be expressed by two functions:
map and reduce, inspired by the operations from functional languages.

The map function takes as input a key/value pair (which is the basic data
unit involved in mapreduce processing) and generates a list of intermediate
key /value pairs:

Map(kl,vl) — list(k2,v2)

Then the intermediate pairs are grouped by keys and passed to the reduce
function which merges them and returns the new formed list as output:

Reduce(k2, list (v2)) — list(v3)

2.2.2 MapReduce Framework

Since MapReduce was proposed by Google as a programming model for
developing distributed data intensive applications in data centers, it has
received much attention from the computing industry and academia thus
becoming a standard for data analisys. For instance, an open source im-
plementation of mapreduce, Hadoop, has been adopted by a large number
of companies as: Yahoo, Facebook, IBM, Amazon, etc. The mapreduce
frameworks are processing huge datasets using a large number of computing
resources(cluster or grids) and a distributed file system for storing data. The
users are submitting a mapreduce job (consisting from a set of tasks) to the
scheduling system that will send it for execution on the cluster. Execution
consists of three stages:

e map stage when the master node is splitting the input data into blocks
of a certain dimension and send them to the slave nodes for process-
ing. The mapper will receive the key/value pair and will generate the
intermediate list of key /value pairs.

e shuffle stage when all of the values that are associated with an individ-
ual key are sent to the same machine.

e reduce stage when the reducer takes all the values associated with the
key and outputs a multiset of key/value pairs with the same key.

The sequential aspect of Mapreduce is observed in the third stage due
to the fact that the map stage must be completed before the reduce stage
begins, the reducers having all the values for a certain key, they can perform
sequential operations on them. The parallelism is involved when reducers
that are processing different keys are executed in parallel.

Besides the ease of paralelization, the users don’t have to worry about
low-level details of parallel programming as : scheduling, fault tolerance
,data distribution and about the shuffle stage, these being handled by the
framework.

The disadvantage of this model is that applications must consist only
from map and reduce functions, thus users must give up to the programming
flexibility for the ease of parallelization .

2.3 Hadoop

The Hadoop project provides an open source framework for the devel-
opment of highly scalable distributed computing applications, that handles
the processing details, leaving developers to focus on application logic. The
project is a collection of related subprojects, the one regarding this thesis is
the Hadoop Core which provides the basic services for building a cloud com-
puting environment with commodity hardware, and the APIs for developing
software that will run on that cloud.

Besides the two fundamental components of Hadoop Core: HDFS (a
reliable shared storage) and MapReduce (analysis system) it also provides
a set of utilities that support the other Hadoop subprojects. Hadoop Core
includes FileSystem, RPC, and serialization libraries.

2.3.1 Hadoop Core
The utilities provided by the Hadoop Core are the following:

e Hadoop commands invoked by the bin/hadoop script. Some of the
most important commands provided are user commands as: (distcp
for copying files in parralel between filesystems), jar (for running a jar
application in the hadoop cluster), job (for getting the status of the
submitted jobs), fs(for running a generic filesystem user client) and
administration commands:

10

— starting/stopping hdfs and mapreduce daemons: namenode, sec-
ondarynamenode, datanode, jobtracker, tasktracker

— for managing HDFS: dfsadmin

— for managing mapreduce: mradmin

e File System shell for the interaction with HDFS and other file systems
supported by Hadoop as Local, HFTP, S3 etc. It is invoked by the
command:

bin/hdfs dfs <args>

Most of the FS shell commands are similar with the Unix commands,
the arguments are URIs with the format:

scheme:/ /autority /path

where scheme (for HDFS is hdfs,for the local file system is file) and
authority are optional, if not provided it will take the default file system
from configuration xml. An examples of folders or files in HDFS is
hdfs://namenodehost/parent /child or simply /parent/child (given that
hdfs configuration is set to point to hdfs://namenodehost).

e Service Level Authorization is in charge with clients access permissions
to the Hadoop services, being performed before other access control
checks such as file-permission checks, access control on job queues etc.
The access control lists are defined in the conf/hadoop-policy.xml con-
figuration file.

e Native Hadoop Libraries providing native implementations of certain
components for performance reasons and for non-availability of Java
implementations.

2.3.2 Hadoop HDFS

HDFS is a distributed file system for storing large files that are hundreds
of megabytes, gigabytes, or terabytes in size, designed to run on commodity
hardware. The files are broken into block-sized chunks, which are stored as
independent units.

One of the most important features of HDF'S is data replication, meaning
that data is going to be copied to multiple storage nodes in the cluster. As
long as there is one replica available, the computation will proceed without
notifications about storage failures.

11

Client

TCPIP 1| NameMode | Metadata
Metworking
DataMode DataMode DataMode DataMode

Replicated data blocks

The simplified overview of HDFS architecture in the image above shows the
processes in charge with the HDFS system:

e Namenode - it is running on the master node, handling management
of the file system metadata and controling the datanodes.

The management of the filesystem metadata is exerted by maintaining
the filesystem tree and the metadata for all the files and directories in
the tree, information stored persistently on the local disk in two files:
the namespace image and the edit log.

The datanode controls is exerted by replication, deletion and creation
of files on the storage nodes that are running the datanode daemon
(meaning that when a file is requested over another file, the namenode
will ask the datanodes to replicate it more often for the increasing of
availability)

For decreasing the amount of traffic on the backbone of the network,
the replication goes first into the same network switch /rack thus struc-
turing the filesystem in an efficient manner.

The namenode also knows the datanodes on which all the blocks for a
given file are located, however, it does not store block locations persis-
tently, since this information is reconstructed from datanodes when the
system starts. Without the namenode, the HDFS cannot be used, all
the files on the filesystem would be lost since there would be no way of
knowing how to reconstruct the files from the blocks on the datanodes.

e SecondaryNamenode - usually it runs on a separate machine,its main
purpose is to periodically merge the namespace image with the edit log
to prevent the edit log from becoming too large, keeping a copy of the
namespace image for using it in case the namenode is failing.

12

e Datanodes - representing the workers of the filesystem.

The Datanodes are responding to read/write commands from HDFS
clients and to block creation, deletion and replication commands from
Namenode. The Datanodes are sending periodically heartbeat mes-
sages to the Namenode, each hearbeat containing the list of blocks
stored on the datanode.

In case of Datanode failure(it won’t send the hearbeat to the Namen-
ode), the Namenode is re-replicating the blocks lost on that Datanode.

2.3.3 Hadoop MapReduce

It provides the framework that handles the execution of map reduce tasks
across a cluster of machines. When a job is executed, the input data is
split into chunks that represent the input of the map tasks, being executed
in parallel. Then the output of map tasks is sorted by the framework and
forwarded to the reduce tasks for the second phase of execution. The input
and the output of the job are usually stored into a filesystem as HDFS. The
framework handles the task scheduling, monitoring and re-execution in the
event of failures.

A MapReduce execution workflow is presented in the image below:

 T==1)
l l l

Map Map Map
Intermediate Intermediate Intermediate
domain domain domain
Reduce Reduce Reduce

— 1 =

Intermediate
domain

Reduce

domain
For starting a map reduce job, the following parameters must be specified
(depending on the job, some of them are optional): the jar file containing

13

the map and reduce functions,job input location in the HDFS.job output
location in the HDFS, input format, output format, class containing the
map function,class containing the reduce function.

The management of the MapReduce job is handled by two processes:

1. JobTracker - runs on the master node, its purposes are the job schedul-
ing and monitoring of tasks on the TaskTracker nodes. It also validates
requested work and, if a datanode fails for some reason, reschedules the
previous task.

2. TaskTracker - manages the execution of individual map and reduce
tasks on a compute node in the cluster.

The only point of failure is the jobtracker, while the failures of tasktracker
nodes are handled by the jobtracker.

14

Chapter 3

Amazon Web Services

Amazon is the most widely known cloud vendor, offering a collection of
services accesible over HT'TP that provide cloud-based computation, net-
working, storage and other functionalities enabling the clients to deploy ap-
plications on an on-demand provisioning and commodity prices.

3.1 Amazon EC2

Amazon EC2 is an infrastructure service that provides resizable compute
capacity in the cloud. It enables cloud clients to start and control virtual
servers in a datacenter through the API and tools it provides.

The compute capacity is controlled through a simple web interface, allow-
ing clients to control each virtual server like a physical machine (install and
configure software as nedeed). They can create a resizeable pool of servers
for handling computing tasks. Users can start a number of virtual servers re-
quiered to perform a task, scaling up or down (adding or removing machines)
based on a demand or terminating the machines when the task is completed.

In addition to scalability of resources number, the computing power can
be also scaled by using different types of virtual servers (less or more power-
ful). Only the used resources are going to be billed.

The EC2 service has 3 main components:

e EC2 instances - the virtual machines that are performing the computing
task designed to run on physical machines

e virtual machine images - AMIs

e the environment - provides the virtual machines configuration and con-
trol

15

EC2 Instances are virtual machines running on top of Xen virtualization
engine meaning that the underlying computer hardware is virtualized and
can be adjusted to give performance within defined specifications, regardless
of what real physical hardware in Amazon’s data centers.

Even if the instances are not running on hardware in the usual sense,
they are configured to provide a well-defined amount of computing power.For
example, Amazon offers several types of instances providing different level of
performance and resourcing, different operating systems. The CPU rating
is expressed in ECU (EC2 Compute Unit), the measure unit of processing
power defined by Amazon. An instance with rating of 1 ECU offers the same
CPU capacity as a physical machine with a 1.0 - 1.2 GHz AMD Opteron
processor. The standard instance types characteristics are presented in the
table below:

Resource Small Large Extra Large

Platform 32-bit x86 64-bit x86 64-bit x86

CPU rating 1 ECU (1|4 ECUs (2 virtual | 8 ECUs (4 virtual
virtual core) | cores of 2 ECUs each) | cores of 2 ECUs each)

RAM 1.7 GB 7.5 GB 15 GB

Storage 150 GB 840 GB (2X420 GB) | 1680 GB (4X420 GB)

I/O Performance Moderate High High

Instance Type Name | m1.small ml.large ml.xlarge

The price of these instances are different, corresponding to the computing
power offered and the region where the datacenter resides. Prices for EC2
instances from EU (Ireland) region:

Windows usage
$0.12 per hour
$0.48 per hour
$0.96 per hour

Linux usage
$0.095 per hour
$0.38 per hour
$0.76 per hour

Small (Default)
Large
Extra Large

In case the user does not specify the instance type to launch, the service is
going to use the small type, which is the default.

For the creation of an EC2 instance, there must be specified an AMI
which is a preconfigured operating system and software. When the instance
is launched, it boots from the image’s filesystem and runs the configurations
and the software stored in the AMI. Then, the user is able to log into the
virtual machine as the root and customize it.

EC2 provides access control over instances using SSH protocol, based on
RSA keypairs.

16

3.2 S3

Amazon S3 is a highly reliable distributed storage infrastructure. It offers
a very simple data model for storing files:buckets and objects. The bucket
is a container holding multiple objects that store data and metadata. Each
object has an unique key assigned that is used for retrieving it.

S3 is built with a minimal set of functionalities:

- read, write, delete objects using either a REST-style or SOAP inter-
face. Objects can also be retrieved using the HT'TP GET interface or via
BitTorrent. An access control list restricts who can access the data in each
bucket.

- objects are stored and retrieved using the unique keys

- objects can be public or private, and access can be granted to specific
users

S3 provides access control mechanisms, allowing the user to make the
data public or private, and grant access to specific users.

Resources from S3 are identified usind URIs with the format http://s3.amazonaws.com/bucket
name/object-name, but it can also be accessed using alternative domain
names.

S3s design aims to provide scalability, high availability, and low latency at
commodity costs. S3 users are billed monthly for their usage of the service.
There are three aspects that are taken into consideration when billing: the
storage space consumed, the volume of data transferred to or from S3, and the
number of API request operations that have been performed on the account.
The prices differ based on the location of S3 bucket.

3.3 Amazon EMR

Amazon Elastic MapReduce is a web service built on top of Amazon EC2
and S3 for processing large data sets. It is enabling users to write mapreduce
applications without having to worry about networking, hardware, instance
provisioning, Hadoop configuration and health monitoring allowing them to
focus more on the problem to solve.

Easy-to-use due to the web console, the Amazon EMR service allows the
jobflow to scale up or down based on its need, being also a reliable service by
automatically re-executing the failed tasks. Another benefit of Amazon EMR
is the cost efectiveness by monitoring the jobflow and turning off resources
when it is done.

It is relying on Amazon EC2 for the creation of a Hadoop virtual cluster
and on S3 for storing application input, output and configuration scripts.

17

The Hadoop cluster created by Amazon EMR consists from three different
types of computing nodes:

e Master node - unique, part of the Master Instance Group, it controls the
entire cluster by running the JobTracker daemon for schduling MapRe-
duce tasks and the Namenode daemon for managing HDF'S

e Core nodes - running the TaskTracker and Datanode daemons, thus,
responsible with the MapReduce tasks execution and files storage in
HDEFS. Part of Core Instance Group, these nodes cannot be removed
from the cluster because it could lead to HDF'S failures

e Task nodes - running the TaskTracker daemon, they execute MapRe-
duce tasks only. The Task Instance Group can be resized anytime
during jobflow execution. The removal of some of these nodes or all
of them will not lead to failures, Hadoop being in charge with the

scheduling re-execution of tasks that were previously executed on the
Task nodes.

By default, the Hadoop cluster consists from the Master node and several
Core nodes.

The architecture of Amazon EMR and the workflow of the jobflow are
presented in the image below.

Elastic
MapReduce
o Request Service 6

' Response

53 B

<

ﬁ g

Your host

Amazon S3
Data Storage

Instance Group
Hadoop Cluster

18

The data processing is represented by a list of instructions named steps
that form a jobflow. A jobflow is executed on a dedicated Hadoop virtual
cluster in the following way:

e the client uploads input data and executables to Amazon S3 and then
it makes an EMR request that fires the jobflow execution

e EMR starts the virtual cluster and then runs the configuration scripts
for Hadoop on each node

e Hadoop downloads the input data from Amazon S3 and executes the
jobflow steps in the order they are defined

e Hadoop executes the jobflow and uploads the output to Amazon S3

e the jobflow being complete,the cluster is terminated and users can re-
trieve the jobflow output from S3

During jobfow execution, users can track its status by checking its state.The
lifecycle of a jobflow is represented in the following diagram:

Run Bootstrap Job Flow
Launch Job Flow Actions Process Steps Job Flow Shut Down Cluster Completed
STATE: T s | STATE: ™ c:’ﬂ"{,'f;’,‘:" T — STATE: ™ ey
STARTING BOOTSTRAPPING RUNNING SHUTTING_DOWN COMPLETED
i
YES
¥
Job Flow
o Job Flow
Add Btep Wamng.fol Shut Down Cluster Terminsted by Ussr
Instruction Marminate-s.
STATE; * p—
STATE: SHUTTING_DOWMN .
WAITING TERMINATED
Shut Down Cluster Job Flow Failure
Any Job Flow
Failure STATE: STATE:
SHUTTING_DOWN FAILED

The jobflow is in STARTING state from the creation until the cluster’s in-
stances are up and running. Then the EMR will run the bootstrap actions on
each cluster node, setting the jobflow’s state to BOOTSTRAPPING. When
bootstrapping phase is done, the cluster is ready to run the MapReduce ap-
plications thus the jobflow goes to RUNNING state. All the jobflow’s steps
are executed sequentially during this phase.

Once the steps execution is finished, the jobflow will go to the SHUT-
DOWN state unless it is configured to wait. In this case, it will go into the

19

WAITING state and wait until new steps are added to the jobflow or ter-
mination is requested by the user. During SHUTDOWN state , the Hadoop
cluster is teminated and the service will set the jobflow state coresponding
to the jobflow execution status.

There are several types of jobs supported by Amazon EMR:

custom JAR - user must know Java and MapReduce API; he must con-
vert the problem to map reduce tasks and implement the coresponding
functions in the jar

Hadoop streaming - user must provide the mapper and reducer in a
programming language of his choice; They are executed like a standard
custom jar by running the Hadoop streaming utility jar with them
passed as parameters

Cascading - executing complex, scale-free, and fault tolerant data pro-
cessing workflows on a Hadoop cluster.Multitool is a command line
application making it easy to execute Cascading workflows on Amazon
Elastic MapReduce.

Hive jobs - executes SQL-like queries over big database tables, as
MapReduce jobs

Pig - executes a Pig script

Main actions supported by Amazon EMR:

RunJobFlow - for requesting the creation of a jobflow with defined
steps that should run on an user defined number of virtual machines of
a certain type

DescribeJobFlows - allows the user to check the progress of the jobflow.
This request will return a description of the jobflow

AddJobFlowSteps - for appending new steps to the jobflow
AddInstanceGroup - for adding new node types to the cluster

ModifyInstanceGroup - for adding or removing nodes from a group
(except that the Master Instance Group cannot be resized and the
Core Instance Group cannot be reduced)

TerminateJobFlow - for manually terminate a jobflow

20

Chapter 4

Problem statement

Besides the great advantages that Amazon EMR offers for large scale
data processing, there are some serious limitations and restrictions that users
meet.

An important restriction is the use of resources provided only by Amazon
datacenters. Users that have access to scientific or private clouds are not
able to use resources from them which could be less expensive or even free of
charge. A restriction imposed by Amazon such that the demand won’t ex-
ceed the number of resources from a datacenter is the limitation of instances
started per account.

Another limitation is the lack of flexibility in operating systems/ Hadoop
versions choice. Amazon is providing virtual machine images based on De-
bian Lenny and it uses older versions of Hadoop(0.18 and 0.20). Another
case is when users have to process private data, they are not allowed to share
it with external clouds. Another important disadvantage of Amazon EMR
is the hourly fee that users have to pay additional to one of Amazon EC2
and the extra-cost for data transfer to and from S3. The cost for an Amazon
EC2 instance is rounded up to the hour, the instance usage for 1 minute has
the same price with its usage for one hour.

Related work has been focused on MapReduce adaptation to the cloud
properties. This was done by modifying existing systems leveraging Amazon
services or creating new implementations of MapReduce on top of existing
platforms as Microsoft Azure platform.

The goal of this thesis is the implementation of an MapReduce execution
platform that uses resources from multiple clouds. Besides the functionali-
ties of Amazon EMR, the service is allowing clients to use different virtual
machine images or Hadoop versions and it is free of charge for the users that
have access to private or scientific clouds (academia staff).

Another important aspect is that the service is able to use different types

21

of Taas clouds that are implementing the EC2 API for managing computing
resources. Open-source versions of cloud computing architectures used by
our service are Nimbus, OpenNebula and Eucalyptus.Furthermore, it can
use S3 compatible storage systems as Cumulus or Walrus.

22

Chapter 5

Architecture and
implementation

As Amazon EMR, the service implemented for this thesis, Resilin, is pro-
viding an abstract layer between the IaaS cloud and the client program. It
implements the main functionalities of Amazon EMR and also some impor-
tant improvements over it, the major one being the usage of resources from

multiple clouds(even different types of clouds).

5.1 Arhitectural overview of Resilin

Resilin architecture is presented in the figure below. As it can be noticed,
there are three entities involved in the processing:the client program, Resilin

and the Iaas cloud.

EMR client program

A
EMR API

Y

Resilin

EC2 API

VM

T S3 API VM
E—
Storage | «———
VM

VM

Hadoop cluster

laas cloud

23

The client program will interact with the service through EMR requests.
Resilin receives the client requests and translates them in two types of ac-
tions: EC2 requests to the IaaS cloud for starting or terminating instances
and remote connections using SSH protocol to the instances for Hadoop con-
figurations.

The steps of running a jobflow for MapReduce execution using Resilin
are the following:

e client uploads input, executables and bootstrap scripts to the S3 com-
patible storage used by the cloud

e client makes a RunJobFlow request to the service

e Resilin validates the parameters of the request and makes an EC2 re-
quest for starting instances

e Resilin configures the running instances through SSH
e Resilin starts jobflow steps execution on the master instance
e Resilin terminates the virtual cluster when jobflow execution ends

During jobflow execution, the client program is able to retrieve jobflow
status(DescribeJobFlows), add new steps to the computation(AddJobFlowSteps),add
new instance group to the Hadoop cluster(AddInstanceGroup), increase/de-
crease the number of instances in a group (ModifyInstanceGroup) and ter-
minate the jobflow (TerminateJobFlow).

The implementation was done in Python, using the boto library for in-
teraction with clouds (EMR and EC2 API). For the SSH connections,it uses
the paramiko library, and for the http requests and response the Twisted
framework.

5.2 Using Resilin

Before making requests to the service, the client must load the virtual
machine image used for instance creation (AMI), the input data, bootstrap
scripts and executables to the cloud storage (eg. Cumulus). This process has
no interaction with Resilin, it depends only on the client program.

5.2.1 Creating a Jobflow

For creating a jobflow in Resilin and starting a virtual Hadoop cluster, the
client program must make a RunJobFlow request with the following format:

24

https://elasticmapreduce.amazonaws.com? Operation=RunJobFlow
&Name=MyJobFlowName
&Instances . MasterInstanceType=ml.small@paramount —15.rennes . grid5000. fr
&Instances.SlavelnstanceType=ml.small@paramount —15.rennes . grid5000. fr
&Instances.InstanceCount=4
&Instances . Ec2KeyName=myec2keyname

&Instances . KeepJobFlowAliveWhenNoSteps=true

&AuthParams

As it can be noticed in the example above, there are some important param-
eters specified into the request that are defining the Hadoop cluster needed
for job execution:

e instance type - the difference from Amazon is that, for Resilin, besides
the type of the instance(ml.small, m1l.medium, etc.), the client must
provide also the frontend address of the cloud where the machines are
going to be started.

Eg. Amazon : "ml.small”

Resilin: ”m1.small@paramount-15.rennes.grid5000.fr”

e InstanceCount - representing number of instances to start in the Hadoop

cluster

For each step in the jobflow the location of the executable and the arguments
must be provided, Resilin will download it from the storage system to the
Hadoop master node.

Currently, Resilin supports only two types of jobflow steps:

1. Custom JAR - where the Hadoop MapReduce application is imple-
mented as a Java jar. The coresponding parameters that must be added
to the RunJobFlow request for this type of step are the following:

&Steps .
&Steps .
&Steps.
&Steps.
&Steps.

member .
member .
member .
member .
member .

. Name=MyStepName
.ActionOnFailure=CONTINUE

.HadoopJarStep . Jar=cumulus://mybucket/jar
.HadoopJarStep . Args . member.1=cumulus:// mybucket/input
.HadoopJarStep . Args.member.2=cumulus:// mybucket/output

2. Streaming - where the client provides the source for single-step mapper
and reducer functions (languages other than Java can be used for this).

&Steps .
&Steps .
&Steps .
&Steps .
&Steps.
&Steps.
&Steps.
&Steps.
&Steps.
&Steps .
&Steps .

member .
member .
member .
member .
member .
member .
member .
member .
member .
member .
member .

. Name=MyStepName

. ActionOnFailure=CANCEL_.AND_WAIT

.HadoopJarStep . Args . member.1=" —mapper”

.HadoopJarStep . Args . member.2=" mapper_file_path”
.HadoopJarStep . Args . member.3=" —reducer”

.HadoopJarStep. Args.member.4= ”reducer_file_path?”
.HadoopJarStep. Args.member.5=" —input”

.HadoopJarStep . Args.member.6="cumulus://mybucket/input”
.HadoopJarStep . Args. member.7=" —output”

.HadoopJarStep. Args. member.8=" cumulus://mybucket/output”
.HadoopJarStep. Jar="hadoop/contrib/streaming/hadoop—streaming.j

25

After receiving the RunJobFlow request, Resilin validates the parameters
and creates the jobflow. The response sent back to the client consists of an
xml containing the jobflowID (parameter used later for requests that modifies
jobflow components).

Cluster deployment

First step in jobflow execution is the provisioning of a Hadoop virtual
cluster. This is achieved by making EC2 requests to the laas cloud to start
the requiered number of instances.

Resilin makes two EC2 requests to the laas, first request is for starting
one instance which will be the Master of the cluster and another request for
starting the core nodes!.

When the instances are running, the jobflow will go from STARTING into
BOOTSTRAPPING phase. At this step, Resilin connects to the machines
using SSH and configures them by setting default Hadoop properties(HDFS
Namenode address, MapReduce JobTracker address), starting Hadoop dae-
mons on the machines, preparing HDFS filesystem and running client boot-
strap actions.

For bootstrapp phase, on each machine in the cluster, the service is storing
a file with the instance and jobflow properties. This way, scripts or commands
can be executed on certain machine types.

When all settings are done, the Hadoop cluster is ready for MapReduce
jobs execution and the jobflow will change its state from BOOTSTRAPPING
to RUNNING.

Jobflow steps execution

A step of the jobflow refers to the execution of a MapReduce application.
When jobflow goes into RUNNING state, it starts to process all the steps
sequentially.

For starting the execution of a step, Resilin downloads the executable
on the master instance and runs the command /home/hadoop/hadoop jar
<executable> <args> for starting Hadoop processing.

If during the execution of the step, an exception occurs, then, depending
of the ActionOnFuailure property of the step, the jobflow will abort or continue
to execute.

After all the steps are executed, Resilin will shutdown the cluster or can
set it to wait for an user action (add new steps).

'If InstanceCount parameter is 1,then, the same virtual machine performs the roles of
master node and core node.

26

5.2.2 View Jobflows Details

For monitoring the status and retrieve extended information about a
jobflow execution, the client can make DescribeJobFlows request passing
the jobflow ID as parameter.

Sample request:

https://elasticmapreduce.amazonaws.com?Operation=DescribeJobFlows
&JobFlowlds . member.1=j —3UN6WX5RRO2AG
&AuthParams

Resilin searches for the jobflow with the specified ID in the user’s jobflows
list and, if there’s a match, it will store all the jobflow properties in an
xml. The xml will be sent as a response to the client. The client can make
DescribeJobflows request any time during the jobflow execution.

5.2.3 Terminate a Jobflow

When a jobflow execution is finished and the jobflow is not set to wait, the
TerminateJobflow action is automatically called. This will close the connec-
tions to the machines and will shut down the cluster. For jobflows that are
in the Waiting state, the client must make a request for jobflow termination.
This request must be made when there is no computation to execute, other-
wise, resources are wasted with no purpose. A jobflow can be termminated
any time during its execution.

5.2.4 Hadoop cluster resizing

One of the most important features of Amazon EMR and Resilin is the
scalability of computing power and resources number. On-Demand, new
resources can be added or removed from the computation.

This thesis focuses more on the improvement of this functionality. While
Amazon EMR uses resources from one of its datacenters for scaling up
or down the computing resources, Resilin can use resources from different
clouds, of different types.

It can use resources from multiple clouds where the client has access. For
example, if there are two clouds A and B, the client started a jobflow that
uses resources from A, then he is also able to add some new resources to the
jobflow by requesting to add new machines from B.

The two actions from the EMR API that involves the computing resources
scalability are the AddInstanceGroups and ModifyInstanceGroups.

27

Adding instance groups

This action is scaling up the computing resources number. It is adding a
new group of instances to the Hadoop cluster (CORE or TASK). By default,
there is a Master instance group, thus, only CORE and TASK groups can
be added.

Request format:

https://elasticmapreduce .amazonaws.com?Operation=AddInstanceGroups
&JobFlowld=j —3UN6WX5RRO2AG

&InstanceGroups.member.1l.Name="Task Instance Group”
&InstanceGroups.member.1. InstanceRole=TASK
&InstanceGroups.member.1.InstanceType=ml.small@cloudB
&InstanceGroups.member.1.InstanceRequestCount=2

&AuthParams

The response to this request will return the id of the newly created group.
The client must provide the jobflow id whose resources he wants to increase,
with the machine’s type, number and role(core or task). The type is speci-
fying the cloud address where the client wants to start the machines.

After the request parameters validation, Resilin will contact the cloud
specified in the type (cloudB) and will request the launching of two new
machines on it. When the machines are running, it will make the default
Hadoop configurations and starts the daemons coresponding to the role of the
instance. Then the machines will contact the master instance from cloudA
and ask for tasks to process, thus joining the Hadoop cluster.

Modify instance groups

Unlike AddInstanceGroups, this action allows scaling up and down an
existent group of instances. The parameters provided to the request must
include the group id and the number of resources it should have. Request
format:

https://elasticmapreduce .amazonaws.com? Operation=ModifyInstanceGroups
&InstanceGroups.member.1. InstanceGroupld=i —3UN6WX5RRO2AG
&InstanceGroups .member.1l. InstanceRequestCount=2

&AuthParams

When receiving the request, Resilin compares the requested number of
instances and the current one. If the current one is smaller, then it will make
a request to the cloud for starting new machines, else, if the current number
is greater then it will terminate the last machines added to the group.

28

Chapter 6

Evaluation

For the evaluation of our implementation we ran various tests on both
Amazon EMR and Resilin. Resilin was used on top of Nimbus clouds, using
Cumulus (which is provided with Nimbus) as a storage system.

Testing configurations :

System Amazon EMR Resilin

[aaS Amazon EC2 Nimbus

Storage system | Amazon S3 Cumulus

Hadoop version | customized 0.20.0 0.20.2

Instance cl.medium(2.13 GHz | cl.medium(2.5 GHz)
- 2.33 GHz)

The evaluation consists of two parts: analysis of the cluster deployment time
and execution time for two MapReduce applications. Experiments were made
using different cluster sizes.

6.1 Deployment Time

The cluster deployment time represents the time interval between jobflow
submission(RunJobFlow request) and steps execution start. It corresponds
to the Hadoop cluster provisioning and machines configuration.

The cluster provisioning includes the propagation of virtual machine im-
age from the cloud storage to the hypervisor nodes and the start of instances.

This phase is indepedent of the MapReduce application submited. It is
only influenced by the number of machines requiered to start. As the number
increases, the time taken for starting machines and configure them increases
too.

29

Another factor weighting in this experiment is the size of virtual machine
image. If the image is large, it will take more time to transfer it from the
cloud storage to the hypervisor nodes.

The deployment time was computed as the the difference between the
jobflow CreationDateTime and ReadyDateTime reported using DescribeJobFlow
action.

The experiments were run using different number of instances, the results
obtained are shown in the image below.

Deployment performance

350
|

O EMR
O Resilin

Deployment time (s)
150 200 250 300
| | | |

100
1

50

2 3 5 9

Number of instances

Both Amazon EMR and Resilin have a stable deployment time. The
measurements show that Resilin is constantly slower than Amazon. As the
Amazon EC2 architecture is not public, we don’t know how they are pro-
pragating the virtual machine image or if they keep it in a cache on the
hipervisor nodes.

Improvements that could be done on Resilin for reducing the deployment
time are the image compression or caching it on hypervisor nodes. Also we
can reduce the SSH connections during configuration(currently there is made
a connection per configuration).

6.2 Execution Time

The execution time corresponds to the time interval between Jobflow
StartDateTime and EndDateTime. For this experiments, we ran two jobflows

30

consisting from one step each. The execution time was computed as the
difference between the StartDateTime and EndDateTime step properties.

Similar Hadoop configurations were used on both Amazon EMR and Re-
silin. Two cores virtual machines were used for instances. During processing,
Hadoop was running 2 map tasks per core and 1 reduce task.

1. Wordcount

This program reads text files and counts the number of occurences of
words. The mapper takes one line of text and splits it into words emit-
ting a key/value pair (word,1).The reducer will combine the map output
and add the values for a word returning the number of occurences of
that word.

We ran a streaming jobflow, providing the mapper and reducer codes
written in python. The input was represented by text files summing 1.8
GB. As discussed earlier, each slave node ran 4 map tasks in parallel
and 2 reduce tasks.

The results obtained are displayed in the next figure:

WordCount execution performance

O EMR
O Resilin

1500

Execution time (s)
1000

500
|

:

2 3 5 9

Number of instances

Resilin was faster in all the cases(the cpu frequency of Resilin instances
was higher than Amazon’s) but as it can observed, the time difference
is decreasing with the addition of machines. This may be due to the

31

Cumulus storage that resides on a single machine(the service node of
Nimbus).
2. Cloudburst

This application is mapping next-generation sequence data to the hu-
man genome and other reference genomes.For its execution we used a
custom JAR jobflow with the parameters specified in Amazon EMR
documentation(240 map tasks and 48 reduce tasks).

The figure below shows the results:

CloudBurst execution performance

O EMR
] O Resilin

600
|

500
|

Execution time (s)

2 3 5 9

Number of instances

In this case, Resilin is slower than Amazon EMR. Since Amazon uses a
modified version of Hadoop, we don’t know exactly if the performance
difference is due to execution environment customization.

For this experiments,Resilin was used with Nimbus clouds deployed on Grid5000.
It showed a similar level of performance with Amazon EMR.

32

Chapter 7

Conclusion

The goal of this thesis was the implementation of a service that should
provide the same functionalities as Amazon Elastic MapReduce but on top
of multiple clouds. This will enable users with access to private or scientific
clouds to run Mapreduce computations without having to worry about cloud
resources management, failures handling,etc.

Resilin is using resources from clouds deployed with open-source laas
toolkits that implement the EC2 interface (Nimbus, OpenNebula, Eucalyp-
tus).

From the test results analysis, we can say that Resilin offers the same
level of performance as Amazon EMR, in the same time adding important
improvements to its functionalities.

Future Work

There are some features left to implement for a complete compatibility
with Amazon EMR APIL. One of these is to offer support for the execution
of other types of jobflows: Cascading, Hive, Pig.

Improvements could be done on the current implementation also. We
need to make a deeper deployment process analysis for finding the reasons
why Resilin is slower than Amazon EMR. Another improvement could be
done on the cloud selection, currently, users must provide the cloud address
where the virtual machines are going to be deployed.

There must be done some tests for checking the functionality of Resilin
when using OpenNebula and Eucalyptus clouds (we mentioned before that
for implementation and evaluation Resilin used only Nimbus clouds).

33

Bibliography

Amazon Elastic MapReduce, http://aws.amazon.com/elasticmapreduce/

Jeffrey Dean,Sanjay Ghemawat MapReduce: Simplified Data Processing
on Large Clusters

Tom White, Hadoop - A Definitive Guide

Qi Zhang, Lu Cheng, Raouf Boutaba, Cloud computing: state-of-the-art
and research challenges

James Murty, Programming Amazon Web Services
Apache Hadoop, http://hadoop.apache.org/
Nimbus, http://www.nimbusproject.org/
paramiko, http://www.lag.net/paramiko/

boto: A Python interface to Amazon Web Services
http://boto.cloudhackers.com/

[10] T. Gunarathne,Wu, J. Qiu and G. Fox, MapReduce in the Clouds for

Science

[11] H. Liu, Cutting MapReduce Cost with Spot Market

34

