
UNIVERSITATEA POLITEHNICA BUCUREŞTI
 FACULTATEA DE AUTOMATICĂ ŞI CALCULATOARE

DEPARTAMENTUL CALCULATOARE

PROIECT DE LICENȚĂ
Servicii de securitate in Cloud folosind BlobSeer

Coordonatori ştiinţifici:
Prof. dr. ing. Valentin Cristea
As. drd. Ing. Cătălin Leordeanu

Absolvent:
Goanță Oana Andreea

BUCUREŞTI

2011

POLITECHNICA UNIVERSITY OF BUCHAREST
FACULTY OF AUTOMATIC CONTROL AND

COMPUTERS
COMPUTER SCIENCE DEPARTMENT

DIPLOMA PROJECT
Secure access to Cloud services using BlobSeer

Thesis supervisors:
Prof. dr. ing. Valentin Cristea
As. drd. Ing. Cătălin Leordeanu

Author:
Goanță Oana Andreea

BUCHAREST

2011

Table of Contents
 1. Introduction...5
 2. BlobSeer..7

 2.1 The needs of data-intensive applications storage systems..7
 2.2 Design principles and their advantages ... 8
 2.3 Architecture.. 10

 3. Web Services and Cloud computing ..11
 3.1 Web Services.. 11

 3.1.1 Web services benefits.. 11
 3.1.2 Web Service Architecture ...12
 3.1.3 APACHE AXIS... 15

3.2 Cloud computing..16
 4. Related work... 17
 5. Secure access to services using BlobSeer...20

 5.1 Addressed security concerns...20
 5.1.1 Client identity ... 20
5.1.2 ACL management... 20
5.1.3 Single sign-on... 21

 5.3 Decoupling the security layer and functional service layer..22
 5.4 Invocation steps.. 23
 5.5 Security data storage...25
 5.6 Key exchange..26
5.7 Delegation..27

 6. Implementation details..28
 7. Experimental results .. 33

 7.1 Functional testing..33
 7.2 Performance testing.. 35

 7.2.1 ACL scaling... 35
 7.2.2 Proxy service overhead..36

8.Conclusions and Future work... 37

Secure access to Cloud services using BlobSeer

Abstract

Web Services are very widespread in today's Internet and Cloud
technologies are becoming more and more popular. Along with the use of these
technologies, there are also some important security concerns that arise. Solving
the problem of security in this context is not an easy challenge due to the fact
that this systems usually have large numbers of resources and users. Users must
rely on the Cloud infrastructure to ensure their security and the security of their
data. The purpose of this project is to allow secure access to web services in a
Cloud environment. Secure access involves encrypted, secure connections, using
authentication methods and access rights management for each user. To provide
an efficient environment we chose BlobSeer as the security data management
system for its distributed nature and performance. In this thesis we will prove
that our system is efficient and that it provides an adequate level of security for
web service-based applications.

 4

Secure access to Cloud services using BlobSeer

1. Introduction

The purpose of this project is to allow secure access to web services in a
Cloud environment. Secured access involves encrypted, secure connections,
using authentication methods and access rights management for each user. This
thesis introduces BlobSeer, an efficient distributed data management service, as
the storage system to be used for security related data. Clouds can offer a large
variety of services (from video and audio streams to financial services), each of
them requiring a different level of security. Users must only access the services
they have been granted access to by the distributed system owners. All of this
goals must be achieved without adding much overhead to these web service
based applications.

In Cloud computing, users hand off their data and applications to
providers. In doing so, they also delegate their responsibility for security. This is
why the risks in Cloud computing security are in some ways different from those
in conventional IT environments. In the Cloud, security is a blend of new and
familiar mechanisms and challenges.

Security mechanisms need to store encryption keys, certificates, the
access rights management system needs to store the access control matrix,
protection against malicious users needs to store access logs. In a could system
with thousands of users, and the constant expansion of the environment, the
storage space is an important aspect. Besides effective data, metadata used for
security and statistics must also be taken into account. While storage space
might not be the problem in a Cloud system with impressive data centers, data
management is certainly an issue. This is critical especially for data intensive
services, such as video streaming or audio applications. In such cases the
storage system has a major impact on the overall performance of the
application. Moreover, the throughput of security data reads and writes also
directly impacts the performance of the system. Security checks are performed
very often, and although the amount of data read/written is small, the access
time adds to the overhead of invoking a service located somewhere in the
Internet. Therefore, a particular feature needed for security management data is
fine-grain access.

In a Cloud environment, it is not always clear which data and applications
reside on which servers at a specific moment, so the data management system
must offer location transparency. Other key features we are looking for in a data
management system for Cloud computing are: high throughput, concurrency,
decentralized data management. BlobSeer meets all the needs of Cloud data
management. It is a distributed service that has a unique architecture consisting
of various entities, each with specific responsibilities. Its design choices (data
striping, distributed metadata management and versioning-based concurrency
control) are the key to its performance. This thesis introduces a solution for
secure access to Cloud web services that is based on the BlobSeer data
management service.

Experimental results have shown that BlobSeer is very efficient in allowing
transparent fine-grain access to massive data, efficient versioning for large
object storage, high throughput under heavy concurrency for Hadoop
map/reduce applications, high throughput in desktop grids and improving QoS in
large-scale distributed data storage services.

 5

Secure access to Cloud services using BlobSeer

The authentication mechanism of our solution allows single sign-on access
control. Cloud platforms can host applications that come from different
providers, each with its own security policies. If each of these services would
independently manage security, losing control over information security at global
level could become an issue in the could, as well as adding other passwords for
end users to manage.

A entity called Service Manager will be in charge of the registration and
authentication process. In order to authorize access to other services after login
into the system, the security manager will grant the user a security token/ticket
associated with an expiration date, that needs to be validated by each service
the user will invoke during its current session. The sing-on mechanism is based
on passwords. The authentication process uses encryption in order to protect the
password and the access token.

Because Clouds provide services on a pay-per-use basis, the access
control system must allow a fine-grain representation of the user's permission to
use these services. Our project uses a representation that is based on clients
capabilities to access individual operations exposed by web services for a given
amount of time.

In order o allow a flexible way to deploy new services, we have separated
the functional layer of a service from the secure access layer. Each web service
will be protected by its own instance of a secure access service, which will act as
a proxy and will perform all security verifications and then invoke the actual
service. This thesis will proof that the overhead caused by the proxy is
insignificant compared to the benefits it brings to the system.

The structure of this thesis is as follows. Section 2 offers an overview of
the BlobSeer distributed data storage service and provides details on the
features needed for our approach. Section 3 provides background information on
web services and Cloud Environments in general, while emphasizing the benefits
of our project. Section 4 describes similar scientific projects which attempt to
offer a degree of security for web service access. Section 5 contains the main
contributions of this thesis. It describes the theoretical aspects of our solution
which provides secure access to web services in a Cloud Environment. Section 6
focuses on implementation details while Section 7 contains the evaluation and
experimental results which prove our solution's functionality and performance.
Finally, Section 8 draws conclusions and outlines directions for future work.

 6

Secure access to Cloud services using BlobSeer

2. BlobSeer

2.1 The needs of data-intensive applications storage
systems

With the emergence of highly scalable infrastructures, like Cloud
computing platforms, the demand for scalable data management has increased.
Efficient storing and accessing massive data blocks in a large-scale distributed
environment becomes an immediate need. Challenges posed by data-intensive
computing have gained an increasing importance, as this applications
continuously acquire massive datasets while performing computations over
these dynamic datasets. The storage service employed to handle data
management for these applications has to address several issues in order to
achieve efficient storing and accessing of data [1].

Aggregation of storage space from the participating nodes with minimal
overhead is highly needed in distributed systems, the Cloud being the best
distributed infrastructure example.

A scalable storage architecture is needed because the data management
system has to accommodate a large number of data providers, with huge data
centers that are continuously being added to the distributed system.

Transparency means that the applications must not be aware of the
explicit localization and explicit transfers of data. Most of the existing data
management systems rely on data localization, which makes this systems more
complex and difficult to work with. BlobSeer handles this aspects in a
transparent manner, simplifying user's access to data.

The ability to store huge data objects is required by several types of
services offered by distributed web systems. Such applications are: multimedia,
databases, data mining, etc. They work with massive unstructured data that can
easily grow to huge sizes (reaching TB), and is continuously modified by the
running services. Traditional file systems and databases manage this files with
increased difficulty as files expand.

High throughput under heavy access concurrency is an important factor
for the system's performance. Traditional parallel and distributed applications
use one of the following mechanisms to achieve this: message passing, Map
Reduce, Dryad. Massively parallel data access must be handled efficiently by the
underlying storage service, as concurrent reads and writes are constantly
changing huge data blocks.

Providing efficient fine-grain access [2] to massive data blocks, stored in
large-scale distributed environments such as grids, is needed because some
applications may only need to access small data chunks repeatedly, but which
are placed in a huge block. This is also the case of security services, that must
read and update security information repeatedly and although the size of the
data is small, the access time influences the system's performance.

 7

Secure access to Cloud services using BlobSeer

2.2 Design principles and their advantages

Using BLOBs to store data. The target usage of BlobSeer are
applications that process huge amounts of data distributed at large scale. The
data is organized in huge objects called BLOBs (Binary Large Objects).The typical
size a BLOB can reach is up to 1 TB. The BLOB contains a sequence of bytes
representing unstructured data, meaning that it can store any kind of data:
pictures, sound, movies, documents, experimental measurements [2]. This
approach has two major advantages:

Scalability. Maintaining a small set of huge BLOBs is much more feasible
than managing billions of small, KB-sized objects. Even if a data management
system would efficiently handle a large number a small data object, the process
of mapping application-level objects to file names add much overhead.

 Transparency. BLOBs are uniquely identified in the system through global
ids. The writing of applications that use BlobSeer's interface will became easier,
because the programmer is freed from the task of managing data locations and
data transfers explicitly.

Versioning-based concurrency control. Provided a scenario where
multiple reads and writes occur simultaneously, BlobSeer's solution for
controlling concurrency is based on generating multiple versions of the blob that
is being updated. The readers will have access to an older version. For each
concurrent write operation a new version will be generated. The versions will
receive unique numbers. Concurrent reads and writes will never conflict, as they
access different BLOB versions. Users can explicitly use versioning. Even when
they don't, versioning is still used internally by the concurrency control system
for enabling parallelism [3].

Generating new snapshots implies that only the differences in versions are
stored. This eliminates unnecessary duplication of data and metadata, saving
storage space and speeding the process of generating a new version. The newly
generated version is not a copy of an older version, but the same data with new
metadata that points to the location of BLOB stripes in the old version and the
new data stripe added by the latest update. The solution follows this design
principle: data and metadata is always created and never overwritten. Metadata
management offers the client the illusion of an independent, self-contained
snapshot.

Blob management interface. BLOB access interface must provide
means for users to create, read/write a subsequence of size bytes from/to the
BLOB starting at offset and to append a sequence of size bytes to the end of the
BLOB. The management operations should be asynchronous. The system must
provide a way to access past BLOB versions and should also guarantee atomic
generation of new snapshots. This interface can be used directly, or it can lay
under higher-level data-management abstractions. The Namespace Manager
offers such an abstraction. The benefits of this design principle are:

Explicit versioning. Highly parallel data work-flows are common in many
data-intensive applications, where data is acquired while it is processed. This
work-flow can be sustained by using versioning. While older versions of BLOBs
are used for processing, new versions can be generated at acquisition time,

 8

Secure access to Cloud services using BlobSeer

without disrupting the processing thread. BlobSeer's interface offers versioning-
based access to data: the user can specify a particular version of the BLOB to be
used in the read/write operation. This frees the programmer from the burden of
dealing with synchronization.

Atomic snapshot generation. Synchronization of concurrent writes and
reads is achieved by making a write operation atomic. Transiently inconsistent
snapshots will never be accessible for reading.

Asynchronous operations. In applications where I/O operations are
frequent and the data involved reaches hundreds of GB, the overall system
performance is affected, despite high data-processing capabilities. I/O operations
should not be blocking. The application should launch a request for writing a
huge amount of data and still be able to continue its execution immediately.

Data striping. Each BLOB is split into stripes of data that are distributed
all over the data providers' machines. This can facilitate data replication
mechanisms and allow fast parallel requests from multiple clients as the data
can be served by more than one machine. Two factors need to be taken into
account for maximizing the benefits of data striping: chunk distribution and
dynamically adjusting chunk sizes.

The configurable chunk distribution strategy means specifying where to
store the chunks in order to achieve the fastest way to access a specific BLOB.
This strategy addresses the issue of load-balancing. High throughput when
different parts of the BLOB are simultaneously accessed can only be made
possible by a good load-balancing scheme. Another advantage would be
minimizing energy consumption, an important aspect of green computing.

Dynamically adjustable chunk sizes. In order to parallelize data
processing, data must be divided into chunks. The way the computation is
partitioned and scheduled influences the performance of data-intensive
applications. Choosing the right chunk size is very important. The dynamically
adjustable chunk size feature adapts the chunk size to a particular application.

Distributed metadata management. Because a BLOB is striped over a
large number of storage machines, a lot of metadata is needed to map all of
these strips to a BLOB id, uniquely defined in the system. A data strip is a
subsequence of a BLOB defined by offset and size. At large scales the metadata
reaches a considerable size and metadata management brings a large overhead
if not well structured. Most traditional distributed file systems have centralized
metadata management. BlobSeer offers a distributed metadata management
scheme with the following improvements over traditional metadata management
[4].

Scalability. The distributed metadata management enables better scaling
of the system with both the expansion of metadata and increasing number of
concurrent accesses.

Data availability. Metadata can be replicated and distributed to multiple
metadata providers, making it possible for multiple metadata providers to serve
clients. Redundancy prevents metadata management from becoming a single
point of failure. This is very important because a lot of pressure is placed on
metadata managers as they have to map every stripe location of a large BLOB to
a client's request (specified by a BLOB id, offset and size).

 9

Secure access to Cloud services using BlobSeer

2.3 Architecture

BlobSeer consists of a series of distributed communicating processes [5].
The next figure illustrates the processes and the interactions between them.

Fig. 1. BlobSeer architecture

Clients may create, read, write and append data to BLOBs. Their number
can dynamically vary. A large number of concurrent clients is expected that may
all access the same BLOB.

Data (storage) providers physically store the data stripes generated by
appends and writes. New data providers can dynamically join and leave the
system.

The provider manager stores information about the available storage
space and schedules the placement of newly generated stripes. It uses a
configurable chunk distribution strategy to maximize the data distribution
benefits for a specific application. Each new provider registers with the provider
manager. The provider manager choses which providers should be used to store
the generated data stripes in such a way that it assures an even distribution of
data among providers.

Metadata (storage) providers physically store the metadata that allows
identifying the stripes that make up a BLOB version. The metadata management
is distributed in order to enhance the performance of concurrent access to
metadata.
 10

Secure access to Cloud services using BlobSeer

The version manager assigns new snapshot version numbers and
publishes the new snapshots to readers. The version manager offers the illusion
of instant snapshot generation, guaranteeing total ordering and atomicity.

This design offers scalability and large-scale distribution. A key design
choice is to avoid assigning a static role to nodes: any physical node can play
one or multiple roles.

3. Web Services and Cloud computing

3.1 Web Services

A simple definition of this concept is the following: a web service is a piece
of business logic accessible through standard-based Internet protocols [6]. This
definition describes a web services as just another web-based application type.
What makes this new breed of technology very powerful is the fact that web
services offer high interoperability - they are hardware, operating system and
programming language independent, since they are based on open standards
such as HTTP and XML-based protocols (SOAP and WSDL).

Web services are software components that communicate using
standards-based web technologies, designed to be accessed by other
applications such as client applications or other web services in a SOA (Service
Oriented Architecture) manner. They vary in complexity from simple and discrete
operations, such as a currency conversion service or checking a banking account
balance, to complex processes running CRM (customer relationship
management) or enterprise resource planning (ERP) systems[7].

Distributed systems consist of loosely coupled entities that collaborate in
order to complete a common task. Aside from message passing communication,
this entities can communicate through another common model – remote
procedure call (RPC). This model is very useful because it resembles as close as
possible with direct method calls. The programming models that have derived
from RPC are CORBA, Java RMI, Microsoft's COM and web services. From all of
these technologies, web services are the one that allow for a distributed
environment in which any applications (possibly from different organizations) can
inter-operate in a standardized, platform independent and language neutral
manner. This will create the illusion of heterogeneity in a distributed system.

3.1.1 Web services benefits

Application and data integration. By using XML as the data
representation layer for all web services protocols, organizations can easily
integrate disparate applications and data formats [7].

Flexibility. Web services can be accessed in a variety of ways: from
client applications, web-based interfaces, and even other web services. A client
can combine and interpret data from multiple web services.

 11

Secure access to Cloud services using BlobSeer

Code re-usability. Many clients can reuse the function performed by the
same web service for different purposes. New applications with different
business objectives can be developed by integrating web services that offer
specific functions, without the need to rewrite them.

Cost savings. Customized applications for integrating data can be
expensive. High interoperability will facilitate the software development process,
eliminating the need for “glue” code used for the integration of incompatible
software components.

Loosely coupling. In a client-server architecture, a tightly coupled
system implies that if the server or client interface changes, the other must also
change. Loosely coupled architectures are more easy to maintain. A web service
client is not tied to the service directly because the server exposes an XML-
based self-descriptive interface (WSDL), which will be discussed later in this
paper. The client easily adapts to the service's changes, using the WSDL
document to compute a valid request, without the user's acknowledgement [6].

Ability to be asynchronous. Asynchronous capability is a key factor in
enabling loosely coupled systems and in accelerating the application response in
the case of in-only operations.

Document exchange support. XML has its generic way of representing
not only simple data, but also complex documents. Web services support the
transparent exchange of documents.

3.1.2 Web Service Architecture

Fig. 2. Protocol stack Fig. 3. Web services architecture

SOAP (Simple Object Access Protocol) is the protocol for exchanging
data over a variety of standard Internet technologies, including SMTP, HTTP and
FTP. Web service technology uses SOAP to send messages between a service
and its client. SOAP messages are XML documents that contain some or all of the
following elements [7][8]:

 12

Secure access to Cloud services using BlobSeer

Envelope - specifies that the XML document is a SOAP message. It
encloses the message itself. All other elements are sub-elements of the
envelope. Each can contain namespace declarations as attributes to correctly
identify and interpret data. A namespace declaration is used to specify the
envelope structure. The envelope may have attributes such as the encoding
style and a namespace declaration for it, although a standard encoding type is
now used by all SOAP web services.

Header - is optional and contains information relevant to the message
such as the date the message was sent, authentication data, etc. The header
might also include the “must understand” attribute which implies that the user
wants the service not to ignore unknown headers. This is useful when multiple
versions of a service exist and the client wants to use a specific version. The
“actor” attribute specifies the recipient of a header element. This is important
because a request sometimes passes through one or more intermediaries before
being processed. SOAP requests can be processed in a distributed manner. This
is an advantage SOAP has over other web service messaging protocols which will
be discussed later in this chapter.

Body - includes the message payload for a request or response. The
message may have an RPC-style structure, specifying the method and its
parameters. The data must conform to the WSDL interface, which contains data
type definitions.

Fault - this element carries information (the fault code and an appropriate
message) about a client or server error within a SOAP message. The SOAP
defined faults indicate: version mismatch , the service is unable to interpret a
header that has the “must understand” attribute, the client payload did not
contain the required information, the server failed to process the request for a
different reason that a bad request content.

WSDL (Web Services Description Language) is an XML-based format
for describing web services. A client who wants to access a web service must
interpret its WSDL file to find the location of the service and its available
operations, the communication protocol, and the correct format for sending
messages. The main elements are: port type (groups and describes the
operations performed by the service), port (specifies an address for a binding,
defines a communication port), message (describes the names and format of the
messages supported), types (defines the data types, as defined in an XML
Schema, referred in the message elements), binding (defines the communication
protocols supported) and service (specifies the address - URL for accessing the
service) [6].

UDDI (Universal Description Discovery and Integration), often
described as the yellow pages of Web services, provides a worldwide registry of
web services for advertisement, discovery, and integration purposes. In order to
discover a web service that provides a specific functionality, a client must search
available web services by names, identifiers, categories, or the specifications
implemented by the web service. UDDI provides a uniform way for listing
services and communicates via SOAP messaging with the client [6].

 13

Secure access to Cloud services using BlobSeer

These protocols (SOAP, WSDL, and UDDI) interact in the following way:
an application that needs a web services has to identify the location of an
appropriate web service. This service is located somewhere on the Internet. The
client send a request to a UDDI broker to search for the service either by name,
category, identifier, or specification. Once identified, the client retrieves the
WSDL of that service from the broker. The WSDL document contains information
about how to access the web service. The client binds to the service by sending
a SOAP message that is valid according to the XML schema found in the WSDL.

Service-Oriented Architecture (SOA) is an architectural approach that
promotes building complex application systems by integrating distributed
components, called services, that implement a specific function. This
components may be provided by different vendors, operating in different
domains. Services may be registered in a global catalog in order to be identified.
If a large variety of services are available, building a new application simply
implies putting together a few already available services [8].

Its main features are: modularity, implementation hided by the Interface,
code re-usability, loose coupling, standardization which eases integration,
statelessness (any two service invocations are independent). The SOA
architecture is often associated with web services, but it has a wider meaning.
SOA can be mapped over distributed systems like grids and Clouds.

SOAP versus REST

SOAP is not the only way to build service-based applications. REST is more
of an old philosophy(a software architecture for distributed hypermedia systems
such as the World Wide Web), but a newer technology for web services.

This thesis focuses on the SOAP approach, because SOAP security poses
more challenges than RESTful services. In order to understand this challenges,
we must see how the two mechanisms differ, although our intention is not to
make an exhaustive comparison between them. While SOAP relies on heavy-
weight standards in order to achieve full platform and language independence, in
RESTful web services, the emphasis is on simple point-to-point communication
over HTTP using plain old XML.

REST is a model for creating services that follows the web model for
manipulating resources that are identified by a unique URI. This model is data-
centric, not functionality-centric [9]. The action used to manipulate resources is
specified by a transport protocol verb(GET, POST, PUT, and DELETE from HTTP
1.1). The nouns are the resources available on the network. REST was initially
described in the context of HTTP, but is not completely bound to that
protocol(any application layer protocol can be used instead with the right
adjustments). The main advantage of RESTful services is the possibility to make
full use of the pre-existing, build-in capabilities provided by the chosen
underlying protocol and minimize the addition of new application specific
features on top of it. REST uses the existing features of the HTTP protocol such
as verbs, URIs, response codes, HTTP caching and security.

In SOAP, each application developer must define a new and arbitrary
vocabulary of nouns and verbs (the service operations), therefore is more heavy-
weight than REST [10]. By doing so, SOAP disregards many of HTTP existing

 14

Secure access to Cloud services using BlobSeer

features (authentication, caching and content type negotiation) and the service
designer must re-invent many of these capabilities. SOAP was designed to be
extensible, so that other standards could be integrated into it. These standards
are collectively referred to as WS-*: WS-Addressing, WS-Policy, WS-Security, WS-
Federation, WS-ReliableMessaging.

REST web services are more concise, don't need additional messaging
layer and are similar in design to the web architecture. However, they are
designed for a point-to-point communication model, therefore less adequate for
distributed computing environments where message may go through one or
more intermediaries, before completing a task. SOAP can be used in the context
of more complex applications, thanks to its additional headers [11].

3.1.3 APACHE AXIS

There are many software tools for developing SOAP web services:
Microsoft .NET, IBM SOAP, Apache SOAP fallowed by Apache Axis, IBM
WebSphere, GLUE. Web services can be hosted by a variety of server
technologies: servers that support servlets, or can run standalone using their
own HTTP server. The most common standards for SOAP-based messaging and
RPC APIs for Java web service implementation are JAXM (the Java API for XML
Messaging) and JAX-RPC (Java API for XML-based RPC).

For this project we have chosen the Java version of Apache Axis2. Apache
Axis2 is an open source web service framework. Axis is basically a SOAP engine:
a framework for constructing SOAP processors such as clients, servers,
gateways, etc. Axis also includes: a simple stand-alone server for hosting web
services (which we have used in this project), a server which plugs into servlet
engines such as Tomcat, extensive support for the Web Service Description
Language (WSDL), tools that generate Java classes from WSDL or WSDL
descriptions from Java classes (this project uses the second development tool),
and a tool for monitoring TCP/IP packets.

The current Axis release is SOAP 1.1/1.2 compliant but has also integrated
support for the widely popular REST style of Web services. Axis2 comes with
many new features and enhancements:

• Speed – Axis uses its own object model and StAX (Streaming API for XML)
parsing to achieve greater speed.

• AXIOM – a light-weight object model for message processing which is
extensible, performance optimized, and simplified for developers. This
model is also used in our project.

• Rapid Deployment – new web services and handlers can be deployed
while the system is running, without having to restart the server.
Deploying new services means simply dropping the web service archive
into the services directory in the repository.

• Asynchronous Web services – invocations can be asynchronous by
using non-blocking clients and transports.

• Other new features are: SOAP with Attachments support, the possibility to
insert extensions into the engine for custom header processing, the
absolute abstraction of transport, WSDL version 2.0 support, security add-
ons, improved support for extensibility by using modules and phases.

 15

Secure access to Cloud services using BlobSeer

3.2 Cloud computing

Cloud computing describes highly and dynamically scalable computing
resources that are provided as an external service over the Internet on a pay-
per-use basis [13]. Cloud computing allows both personal and business users to
run software (e.g. business applications, e-mail) or use infrastructure (e.g.
storage space) on an as-needed basis. The client doesn't need to have the
knowledge or control over the technology infrastructure in the Cloud that
supports them [14]. The complex infrastructure is completely transparent to the
user so that the user doesn't need to install any special software, use a specific
operating system or hardware. Users do not download and install applications on
their own devices since all processing and storage is maintained by the Cloud
server, removing the burden of software maintenance and support for business
or personal users. Users can use Cloud services from multiple platforms
computers, pads and tablets, smart phones, as long as they have Internet
access. This is due to the fact that Cloud services are web-based.

Cloud applications can be implemented with multiple technologies, as
long as they are web-based. They range in complexity from very simplistic
services that only require the HTTP protocol, to more sophisticated web
applications that require databases, web service infrastructure and message
queues [15]. A Cloud environment is a distributed system consisting of numerous
heterogeneous entities. A good choice for implementing Cloud applications are
web services, since they bring homogeneity to the world of distributed
computing.

Cloud services are delivered in three ways: Platform as a Service (PaaS),
Infrastructure as a Service (IaaS) and Software as a Service (SaaS). This thesis
attempts to offer secure access to SaaS. SaaS [16] is based on a “one-to-many”
model which means that an application is shared across multiple clients. Next,
we will try to bring arguments in favor of the idea that web services represent a
suitable technology for the implementation of SaaS.

In order for this infrastructure to be scalable, multi-tenant efficient and
configurable to the needs of each user, SaaS applications must be designed to
run in a stateless way, which means that any necessary user and session data
should be stored either on the client side, or in a distributed store that is
accessible to any application. In order to achieve performance the applications
should have a design that allows asynchronous I/O and a highly concurrent
database. SOAP web services allow asynchronous invocations and function in a
stateless fashion. BlobSeer is a data storage service that suites the needs of
SaaS applications.

Software as a Service can also take advantage of Service Oriented
Architecture to enable software applications to communicate with each other.
SaaS applications cannot access internal resources such as databases or internal
services unless they use integration protocols and APIs that operate over a wide
area network. These are protocols based on HTTP, REST or SOAP.REST and SOAP
services enable easy integration between SaaS applications and internal
resources or other SaaS applications.

 16

Secure access to Cloud services using BlobSeer

4. Related work

Cloud security is challenging due to the large number of resources and
users, the interaction between different security domains each with its own
degree of security and different security mechanisms and implementations. A
heterogeneous security management system can be achieved by using web
services (as discussed in the previous chapter) and web services security
standards.

XML Signature and XML Encryption

The two mechanisms were developed for securing business transactions
on the Web. Encrypting the communication (e.g. Secure Socket Layer protocol) is
not enough to protect such sensitive data; the data needs to be encrypted as
well. This mechanisms address the issues of source identity, integrity,
confidentiality and non-repudiation. They take advantage of the special nature of
XML data and are currently being standardized. Together with XML
Canonicalization, they offer a particular way for signing and encrypting XML
documents: partial signing/encryption (of individual elements or entire
documents). This is highly important for allowing end-to-end security and not
only point-to-point security. During a transaction, an XML document can be
processed by multiple entities. Each entity might only want to sign the part of
the document it is responsible for. When assuring the integrity of data, the XML
signature mechanism must specify which elements correspond to each
signature, or else the recipient might interpret the data as corrupt if an
intermediary has added new data to the document, and the verified signature
has been computed for only the data the first entity had attached to the
message.

XML Signature and XML Encryption [6] rely on existing security
mechanisms such as public key infrastructure and asymmetric cryptography,
symmetric encryption, secret key negotiation, hash/digest transformations.

A digital signature ensures the integrity of data by using the
mathematical property of irreversible functions that produces a unique outcome
for each input, and pair numbers that can be used by encryption algorithms in
such a way that the data encrypted using one number can only e decrypted
using the pair number (the numbers represent public and private keys). Data
that has been encrypted with the intended receiver's public key can only be
interpreted by the original receiver (using its private key) and the other way
around. In order to correctly identify the sender, public keys and sender identity
need to be recognized by a third part. This is called a Certificate Authority and
the mapping between identity and public key represents a certificate. The
recipient verifies the signature by applying the same algorithm on the message
and comparing it with the signature. Only the digest of the secured data will be
signed, due to the complexity of the used algorithms .

XML Signature requires that the data that was signed is accessible either
by specifying the URI inside the signature, embedding the data in the signature
or referencing the data as another element inside the same XML document as

 17

Secure access to Cloud services using BlobSeer

the signature. An XML signature element contains sub-elements that specify the
following: signed data reference, digest method and digest value for each
reference, the signature method, a “key info” element that can embed or
reference the sender's X.509 Certificate (the standard for certificates) and the
value of the signature. The XML EncryptedData element has a similar structure,
containing the encryption algorithm, key info, cipher data which contains the
cipher value (the encrypted data). This two mechanisms are very flexible
because they allow both symmetric key and asymmetric key algorithms, and
allow the user to choose from a variety of mechanisms such as md5/sha, des,
triple-des, aes, rsa, etc. [18].

Kerberos

Kerberos is a security mechanism that addressed mutual authentication.
Although it was originally used in operating systems security, it is a suitable
authentication protocol for network security and Cloud access to services ass
well. It addressed the issue of single sing-on on systems with many independent
resources. We describe this protocol in detail because our solution shares some
concepts of Kerberos [19]. The core of this protocol is using tickets for mutual
authentications.

The are four entities involved: the client machine, the authentication
server (AS), the ticket granting server (TGS), and the service server (SS). The
steps are:

• the user enters the username and password only once; the client
application computes the hashed value of the password, which will be
used as the user's secret key

• the client send a simple request to the AS; the AS computes the user's
secret key from the password that had already been stored in the AS
database; AS sends back a key shared by the client and the TGS
encrypted with the client's secret key and ticket-granting-ticket encrypted
with TGS's private key; the client obtains a session key for client-TGS
communication from the received message

• when requesting access to a service, the client sends the ticket granting
ticket, the service name, the client id and time stamp and receives a ticket
for accessing the service and a client-SS session key.

• the client can communicate with the service server using the shared
session key that the service server will obtain from the client's request
after decrypting it with its private key, and will be authorized to use the
service by the ticket (which will eventually expire).

The features that we keep from this authorization protocol are: single sign-
on and the ticket granting service. Instead of using private and public keys to
encrypt the communication between client and TGS, we will implement a shared
key negotiation protocol. We will eliminate the need for AS. A single entity will
play both roles: authentication service and security token granting service.

 18

Secure access to Cloud services using BlobSeer

WS-Security

WS–Security is the standard for web service security. This standard does
not define new security solutions, but relies on existing standards and
specification. It describes the way to integrate this mechanisms with SOAP
messaging protocol [6].

Using HTTP security for caller identification, message signing and content
encryption is a solution that only applies to point-to-point communications. Web
service requests might be processed by multiple intermediaries before reaching
destination, in a SOA fashion. Section 3.1.3 introduces the SOAP message format
and the “actor” attribute that identifies the recipient of a specific header. Once
the header is processed, its contents are dropped and the rest of the message is
send to the next actor. In order to allow secure end-to-end communication, new
security protocols need to be developed. Another reason why relying solely on
the transport protocol security mechanisms is insufficient is the fact that SOAP
aims to be transport independent and the message can be carried out over
different transport protocols from one recipient to another.

The existing solutions for authentication, message signing and encryption
that WS-Security uses are: Kerberos and X.509, XML Signature, XML Encryption
and XML Canonicalization (this is used for preparing the XML message for signing
and encryption). All of these elements will be embedded into the SOAP message.

WS-Security defines a new SOAP header that will contain all security
elements. Any number of EncryptedData and Signature elements can be inserted
in this header. WS-Security also introduces a mechanism for transferring
authentication credentials. The UsernameToken element can be used for simple
authentication credentials (a custom authentication based on username and
password), while BinarySecurityToken will manage more complex credentials
(Kerberos tickets or X.509 certificates) [20].

A typical authentication message flow is the following: the web service
client sends a request to a security token service and obtains an access token
with a time-stamp. The client will include this token in his message, sign the
message and send it to the web service. The security token service might not be
implemented as a web service. When using Kerberos, the client should sign the
message with a secret shared only by the service and client, such as the client's
hashed password. If X.509 certificates are used, the client can sign the message
with its private key and the server will decrypt it using the client's public key.

WS-Security uses additional utility elements contained in the Wsu
namespace: id and timestamp. Timestamps are used for preventing reply
attacks, while the id elements are used to simplify processing for the
intermediary actors. The SOAP security header has a different format for each
type of authentication method: basic and digest password authentication, X.509,
Kerberos. Any other methods can be used as well, because the WS-Security
standard doesn't require a specific format. The syntax for signing and encryption
will be the same as described for XML Encryption and XML Signature in the
previous section.

 19

Secure access to Cloud services using BlobSeer

5. Secure access to services using BlobSeer

5.1 Addressed security concerns

Our security solution is based on a central authority referred to as Security
Manager, that is responsible for users, services and access control management
as well as for offering authorization credentials to legitimate users.

5.1.1 Client identity

The first important step in securing a Cloud environment, as with any
other Internet accessible system, is preventing access from unwanted users. To
authorize access to resources, applications first need to authenticate the source
of the request (referred to as the subject), which can be any entity, such as a
person (the end user's client program) or a service (a service the user has
accessed that invokes another service).

The authentication typically involves the subject demonstrating some
form of evidence to prove its identity. In our implementation the evidence is the
password. In order to to avoid password attacks, we have chosen to encrypt the
password with a secret key shared by the user and Security Manager, addressing
the issue of confidentiality. Once authenticated, the subject owns a set of
security attributes, referred to as credentials. The credentials are used to
authorize access to subsequent service invocations. In order to protect the
system against reply attacks or minimizing the impact of such attacks,
credentials must be unique, arbitrary generated and have a short life span. This
are the characteristics of a session identifier. In our application, the session id is
generated by the Security Manager as fallows:

SID=hash function username randomnumberloginnumber

5.1.2 ACL management

A protection system groups all the conditions under which a system is
secure. An access control matrix[17] is a way to describe a protection system. It
must describe relations between all resources (objects) and users (subjects). The
access control matrix model has its origins in operating systems design and
database access, but can be successfully applied to Cloud resources access
control too. There are two ways for implementing the two-dimensional array
(access control matrix): access control lists (ACLs) and capabilities lists. In the
access control list approach authorities are bound to the objects, in the
capabilities list authorities are bound to the subjects. An ACL is a list of
permissions (subject, operation) associated with various objects. A capabilities
list is a list of objects and their corresponding permissions attached to a subject.
Both implementations have advantages and disadvantages, but choosing one of
them depends on the system that needs to be secured. Capabilities lists allow a
finer grain of protection and allow a safer way for managing rights transfers. In a
Cloud environment, users outnumber services and are more dynamic, so a

 20

Secure access to Cloud services using BlobSeer

capabilities-based control access is more suitable. Although we choose to
implement access control as capabilities list, we will refer to them as ACLs,
because of the wider meaning of this term.

Cloud access management is based on concepts like on-demand resources
and pay-per-use services. Thus the access control scheme must take into
consideration the fact that a certain user can only request access to some of the
available services, to only some of the operations this services provide, for an
indicated period of time.

We have decided to implement the access control scheme with Access
Control Lists. Scalability has been taken into consideration when choosing a “per
user” list, instead of a “per service” list, because the number of users is usually
larger than the number of service providers and services. Besides this, users
tend to leave or join the system in a more dynamic way. The allowed access
levels are: 1 – owner, 2 – user.

Security Manager must provide the means to update a user's ACL in the
following situations: a user asks for permission to invoke a service, a user asks
for permission to host his services on the Cloud, a user delegates some of his
rights to another user.

5.1.3 Single sign-on

A Cloud platform can host applications (in this case web services) that
come from different providers, each with its own security policies. If each of
these services would independently manage security, losing control over
information security at global level could become an issue in the could, as well
as adding another password for end users to manage. This would pose a risk to
security and increase the complexity of security management both in the Cloud
and for the client.

Our solution offers single sign-on to SaaS web services without requiring
integration of the authentication infrastructure with the web service owner, in
order to accelerate the deployment of new services. In order to achieve this, all
security information (single password, single encryption key) is logical
centralized using the BlobSeer storage system, still ensuring high throughput
data access because of the distributed nature of this system. The second
measure is to separate the functional layer and the security layer in the services.
The security layer is represented by a universal security service that will perform
all necessary access control verifications. The functional layer is the unaltered
service a owner hosts on the Cloud. The Service Oriented Architecture pattern
that has inspired this approach will be discussed in section 5.3 along with the
issues that arise from this approach.

5.1.4 Access logs

Access logs are the starting point for security audit in this scenario. By
storing information every time a user logs in the system or invokes a service, the
application ensures full trail of access for all users that may come in hand in the
event of a security breach.

 21

Secure access to Cloud services using BlobSeer

5.2 Project requirements

This section lists the main operations Security Manager must offer in order
to make full use of the proposed access scheme capabilities. The steps for
invoking a service to which a user has gained access by using any of the Security
Manager operations are also mentioned.

1)Registration. The client must provide a password that will be
encrypted using a secret key that Security Manager and the client exchange
during the registration process.

2)Authentication. Service Manager will provide the client with a session
id, considering that web services use a stateless protocol such as HTTP.

3)Available services list. The client needs to be aware of the existent
services, so that it won't unnecessarily ask for permission to a service that is no
longer available or he already has access to, try to invoke it, or try to deploy a
web service under the same name with a pre-existing web service.

4)Grant access. The client can ask for permission to invoke an operation
of a web service for a given period of time. The access level this operation sets is
“user”.

5)Grant owner rights. A client can ask for permission to host a service
on the distributed system. This operation sets the “owner” access level.

6)Delegate rights. A client can offer access (“user” level) to another
client for a service he owns or has access to.

Once a client has gained access to a service (using one of the operations
3, 4 or 5), the client can invoke the service in a secure manner. The following
operations will not be performed by the Security Manager. This operations are
done by an individual entity for each deployed service in order to ensure
scalability with the number of services, users, geographical scalability, and
independence from Security Manager.

7)Check for permission to invoke the service.
8)Log the client's access to the service (web service name, operation

name, access time).
9)Invoke the service. The invocation process is independent from the

Security Manager.

5.3 Decoupling the security layer and functional service
layer

Section 5.1.3 has highlighted the benefits of single sign-on in a distributed
system with many independent applications. In our implementation the client
must present the credentials obtained from the Security Manager in the
authentication process (using a single password) each time he invokes a service.
The credentials and the permission to invoke the service verifications are
performed in the same way before invoking any service.

We have established that a service invocation consists of the secure
access layer and functional layer. The question that remains to be answered is:
where in this infrastructure should the secure access layer of the invocation be
placed?

 22

Secure access to Cloud services using BlobSeer

 Before a web service answers a request, the system must check if the
user's session is still valid and if the service is listed in the user's ACL. If the
service performs this verification itself, then the original code of the web service
whose functionality has been clearly specified in its WSDL description document
must be altered. In this approach the web-service is security-aware. The
disadvantages of this implementation are obvious: the security layer in the Cloud
and the functional layer of the web-service are tightly coupled.

A much more flexible solution is placing the secure access layer in a
different web service. This will ease the integration of the authentication
infrastructure in the Cloud with the owner service code, without the need to alter
the original service code or re-deploying the service each time the security
mechanisms change.

This solution is compatible with logic centralization, a Service Oriented
Architecture design pattern that aims to increase the re-usability of logic by
ensuring that services do not contain redundant logic and that any reusable logic
is placed in the most suitable service functional context [23]. The security logic
will be contained in a new service having the role of a proxy for each service.

There are multiple ways to map the proxy web services to the actual
services: as a single secure access service that acts like a proxy for all services,
multiple replicas of the secure access service, or each service with its own
secure access service. We have chosen the third approach because it is more
scalable. This also allows anonymous access to a service. The client will know the
endpoint of the secured service, but not the endpoint of the actual service. The
client will invoke the proxy service, which offers the same interface as the actual
service, and the proxy service operation will invoke the actual service after
checking weather the client has access to the operation or not.

The disadvantage is the overhead added by the secure access service
invoking the functional service, which results in two service invocations instead
of one. The experimental results will analyze the overhead.

5.4 Invocation steps

This section describes the full functionality of the operations listed in
section 5.2 presenting the preconditions needed for each operation to succeed
and the changes each operation causes to the system's security information.

1)Register. This operation is divided in two phases: requesting a
username and exchanging keys (stage 1) and sending the encrypted password
(stage 2).The first phase can fail if the username is unavailable or if an error
occurred when exchanging keys, otherwise a new entry will be created in the
users database and the secret key will be stored in the corresponding file. After
stage 2 the password will also be stored.

2)Authentication. The preconditions for this operation are a valid
username, a valid encrypted password and no other open session. This operation
results into writing the generated credentials (session id, authentication time and
expiration date) to the corresponding file.

 23

Secure access to Cloud services using BlobSeer

3)Grant access. The client must be authenticated, the requested service
and operation must be available. Service Manager must thus consult the user's
credentials file, files containing information about existing services and their
operations. This operation will alter the user's ACL file.

4)Grant owner access. The user must be authenticated, the requested
service name must be available. This operation will alter the user's ACL file and a
new entry will be created in the available services directory.

5)Delegate access. The user must be authenticated, the user who is
being granted access must be registered, the service and operation must exist,
the user delegating access must have access to the service himself. This
operations will alter the second user's ACL file.

6)Service invocation. The user must be authenticated, the secured
service must consult the user's ACL. Each invocation will log the name of the
operation, service and time, after which it will invoke the original service.

Fig. 4. Usage diagram

 24

Secure access to Cloud services using BlobSeer

5.5 Security data storage

The previous section highlights the basic information every security
management system needs to store. Additional information like logs may also be
needed in order to address other security issues such as Denial of Service
attacks from malicious users.

The proposed security scheme stores data individually for each user and
service. The services directory will contain an individual file named after each
service containing the following information. Likewise, the users directory will
contain a subdirectory for each user.

Fig. 5. Security storage

Fig. 6. ACL file

 The amount of data stored for each user for security purposes may not be
significant, but the overall amount of data can easily reach TB when storing
access logs for long term users in systems with numerous users. The scalability
of the storage system is an important factor because Service Manager must
create a new directory each time a user registers.

The necessity of high throughput under heavy access concurrency raises
from the fact that more than one user can login, access a service, ask for
permission to use/deploy a new service or invoke multiple services
simultaneously. Most of a user's files can be altered or read simultaneously by
Service Manager and other services the user invokes. The application makes use
of the decentralized data feature of BlobSeer, but more important than this is the
decentralized metadata management.

 25

Secure access to Cloud services using BlobSeer

5.6 Key exchange

This project uses symmetric key cryptography for authentication. The
shared keys are generated using the Diffie-Hellman protocol. The Diffie–Hellman
key negotiation method allows the two parties (Security Manager and new client)
that have no prior knowledge of each other to establish a shared secret key over
an insecure communication channel. HTTP, SMTP, FTP are valid application layer
protocols used as transport for SOAP (the most common messaging Protocol for
web services), but HTTP has gained wider acceptance as it works well with
today's Internet infrastructure. The transport protocol used in this project is
HTTP, therefore an insecure communication channel. This key will be used to
encrypt subsequent communications using the AES symmetric key cipher.

The two parts establish a secret key during the registration process. In
order to protect the password at registration time, the registration process is
divided in two phases. During phase 1, the client generates the Diffie-Hellman
parameters (the P and G numbers), generates random number Xa (secret),
computes Ya = G ^ Xa mod P(public) and sends a request containing Ya and the
username to Security Manager. The manager can reject the request or accept it,
in which case it generates the secret number Xb, computes shared secret key,
stores it and sends back to the client a message containing Yb = G ^ Xb mod N.
Now the client can compute the secret key also. This protocol consists of two
service invocations.

Fig. 7. Registration protocol

The next diagram describes the authentication protocol. This is a
challenge-response protocol that attempts to prevent sniffing or reply attacks. In
order to prove its identity, the client must provide the correct password and
posses the previously negotiated secret key. The secret key generated in the
registration step and used for authentication, could be the starting point for the
encryption of all subsequent communication. This could be achieved by using
session keys that will be transferred to the client in a secure way, encrypted with
the secret shared key.

 26

Secure access to Cloud services using BlobSeer

Fig. 8. Authentication protocol

5.7 Delegation

Delegation is a mechanism of assigning access rights to a user. Security
Manager already offers grant-access and owner permission operations.
Delegation is not a redundant functionality for our system, because this
mechanism is top-down oriented (from higher access rights to lower rights) as
opposed to the other two access control managing operations.

Delegation comes in many forms: administrative delegation, user
delegation, delegation at authentication/identity level, delegation at
authorization/access control level, grant or transfer delegation [21]. Delegation
at authentication level, while very popular in operating system, is not suitable for
Cloud platforms. Therefore, our application will only address access control level
delegation.

Administrative delegation allows an administrative user to assign access
rights to a user but does not necessarily require that the administrative user has
the ability to use the access right. Therefore, we will only address user
delegation. This allows a user to assign some of his rights (requires that this user
can use the right himself) to another user. Only individual permissions can be
delegated. Delegating all permissions would almost be the same as delegating
the identity. Cloud clients sign up for particular application and every client has
specific needs at some point, so there is no need to transfer all permissions to
another user. Only the user access level can be granted by this mechanism. The
first user must have owner rights or the right to access a service for at least the
amount of time it grants to the second user.

We have chosen a grant delegation model instead of a transfer model, so
that the service is still available for the first user. The motivation is the fact that
our system offers time limited access to a service, instead of a pay-per-use
model where the client is billed according to the number of invocations.

 27

Secure access to Cloud services using BlobSeer

6. Implementation details

The project implementation consists of demo web services, their
corresponding proxy services, the Security Manager service and the client
application.

All web services and the client application were developed using Apache
Axis2 Axiom API for the Java programming language. Axiom stands for AXis
Object Model (an XML data model conceptually similar to DOM and JDOM) and it
is an API for manipulating the XML data in the SOAP request and receive
messages.

This project has a modular design divided in several packages. The
Security Manager service implementation class and the client implementation
class are included in packages from the following package diagram. All other
proxy services for each demo service import the “common” package, which
contains security primitives that rely on BlobSeer. The “common” package
imports “fblobseer”, the Java bindings for Namespace Manager's client.
Namespace Manager enables a file-oriented access to BlobSeer by mapping
BLOBs and files.

Fig. 9. Package diagram

All packages in the above figure will be detailed in the following section.

 28

Secure access to Cloud services using BlobSeer

 manager package

Fig. 10. manager package

• The S ecurity M anager class implements all operations exposed by the
corresponding service. The two private functions are used for generating a
unique session id that authorizes operations subsequent to authentication
and for retrieving a user's secret key.

• Each operation exposed by this service interacts with BlobSeer for testing
the preconditions of each operation and updating ACL files, status files,
credential files etc. according to the specification describes in section
5.4(Invocation steps).

 common package

Fig. 11. common package

• The Constants interface defines configuration parameters for managing
BlobSeer files such as the BlobSeer configuration filename, BLOBs page
size, the name of each file that stores user or service information, the
entry size for each type of file, constants that describe the data structure

 29

Secure access to Cloud services using BlobSeer

for each file. The encryption algorithm is also defined as a constant. The
purpose of this interface is to group all configuration parameters the user
of the application might adjust to its needs.

• BlobSeerUtils is a class that provides higher-level functions for working
with BLOBs. The current BlobSeer implementation allows writing only
multiple of page size bytes to a BLOB. The wrapping append function
allows an arbitrary data size. An arbitrary size write operation implies
reading the last page, updating it and writing it back. A page size closer to
the average record size advantages the write operation. Since a record
size is much smaller (256B) than the usual page size (64KB) this could
result in significant metadata overhead. Choosing the right page size is
a trade-off between the performance of a write operation and metadata
management. The other functions are used for exploring the content of
files and directories.

• BlobSeerSec implements security primitives. The getField and getAllFields
functions are used for conveniently exploring the structure of security data
files.Most of the functions in this class are used by the Security Manager
class for managing the access control list, while checkInvocation contains
the entire logic behind the proxy services.

 exceptions package

Fig. 12. exceptions package

• This package defines exception classes for every reason a request to
Security Manager service or service invocation might fail. They are caused
by user errors, while internal errors are reported by any other type of
exception. All Security Manager operations are in/out operations returning
a success message or a message corresponding to the thrown exception.
Proxy services offer in/out wrapper operations regardless of the invocation
type of the original operations.

 30

Secure access to Cloud services using BlobSeer

 cryptography package

Fig. 13. cryptography package
• This package is shared by manager and client packages. The message

digest function if used for generating the session id. The Encryption class
instantiates a chipper for the encryption algorithm defined as a constant.

• DHKeyExchange functions are used in the key establishment process.
• The SecurityManKeyManagement and ClientKeyManagement classes

expose methods used for saving secret keys to blobs/binary files
and restoring them.

 client package

Fig. 14. client package

 31

Secure access to Cloud services using BlobSeer

• The ClientPayload class generates the request payload for each type of
service operation. This separates the web service call specific code
making the Client class less verbose.

• The client accepts input from files, standard input and command line
parameters. The executeCommand method interprets commands and
invokes the correspond web service operation.

SOAP attachments

During the registration, the client application and the web service must
exchange public keys. The keys are represented by the PublicKey class. Despite
the fact that XML is very flexible, sometimes serializing data as XML is not the
best option. In order to transmit a custom data-type, the programmer must
define new serializers and deserializers and both the client and service
implementation class must register the new type mappings. In this case it is
much more convenient to transmit the binary representation of a PublicKey
object. The binary attachment can be send together with the SOAP message.

One way to support opaque data/binary data in XML is to encode objects
as base64 or hexadecimal text and embedding them directly in the XML
message as elements or attributes. This approach is known as “by value”
transfer. The other solution is called “by reference transfer” and involves
attaching the data externally, outside the XML message which will contain an
additional element or attributes representing the URI to that data. The
advantage is saving processing power, the disadvantage is working with two
data models. This approach is similar to e-mail attachments.

MTOM (SOAP Message Transmission Optimization Mechanism) is a
specification for sending binary data in Axis2, that tries to combine the
advantages of the two mechanisms mentioned before. It uses one data model,
and the attachment becomes in-line with the message, although its physically
separated [22].

 32

Secure access to Cloud services using BlobSeer

7. Experimental results

7.1 Functional testing

Test setup

We have deployed ten demo services (named Servicei) and their
corresponding proxy services (named SecServicei). A successful invocation of
SecServicei will return a message from Servicei with the following format:
Response from:Service i :operation j i=1,10 j=1,5 .

Two users are registered: user1 and user2. User1 is the owner of
SecService1 ...SecService7 . Services 1 through 7 with operations 1 through 5 are

the only available services at the moment. User2 has been granted access to all
operations of services 1 to 6 for the next 300 seconds.

The available commands for the client application are:
 register: r username password
 auth: a username password time
 access: g service_name operation_name
 own perm: o service_name [operation_name]+
 delegate: d username service_name op_name time
 invoke: i service_name operation_name
 list: l all|perm
 exit: e

Test output

Each invocation response is followed by the corresponding command and
commentaries on the expected output. The test case contains almost every
possible conditions for each type of operation.

11:49:34> Command: r user2 user2 # unavailable username
11:49:37> Register phase1 response: The requested username is unavailable.
11:49:38> Command: a invalid invalid 120 # invalid username
11:49:38> Authentication operation failed. Invalid username. Error opening key file.
11:49:39> Command: a user2 invalid 120 # invalid password
11:49:39> Authentication response: Invalid username or password.
11:49:40> Command: a user2 user2 300 # success
11:49:40> Authentication response: OK
11:49:41> Command: a user2 user2 300 # another session is open
11:49:41> Authentication response: Another session is open.
11:49:42> Command: l all # list all available services
11:49:42> GetAllServices response: OK
 SecService7
 operation1
 operation2
 operation3
 operation4
 operation5

 33

Secure access to Cloud services using BlobSeer

 ...
 SecService1
 ...
11:49:42> Command: l perm # list services whit permission
11:49:42> GetAllServices response: OK
 SecService6
 all u 30.06.2011 11:50:30
 ...
 SecService1
 all u 30.06.2011 11:50:30
11:49:43> Command: i SecService1 operation1 # success
11:49:43> Invocation response from SecService1:operation1: Response from Service1:operation1
 ... # test permission for services 2, 3, 4.
11:49:48> Command: i SecService5 operation5 # success
11:49:48> Invocation response from SecService5:operation5: Response from Service5:operation5
11:49:49> Command: i SecService6 operation6 # unavailable operation
11:49:49> Invocation operation failed. The service/operation might not exist or is temporally unavailable.
11:49:50> Command: i SecService8 operation1 # unavailable service
11:49:50> Invocation response from SecService8:operation1: Unavailable service or operation.
11:49:51> Command: i SecService7 operation5 # no rights to access this service
11:49:51> Invocation response from SecService7:operation5: No rights to access this service
11:49:52> Command: g SecService7 operation1 120 # success
11:49:52> GrantAccess response for SecService7:operation1: OK
11:49:53> Command: i SecService7 operation1 # success
11:49:53> Invocation response from SecService7:operation1: Response from Service7:operation1
11:49:54> Command: i SecService7 operation2 # no rights to access this operation
11:49:54> Invocation response from SecService7:operation2: No rights to access this service
11:49:55> Command: g SecService7 all 120 # success
11:49:55> GrantAccess response for SecService7:all: OK
11:49:56> Command: i SecService7 operation3 # success
11:49:56> Invocation response from SecService7:operation3: Response from Service7:operation3
11:49:57> Command: g SecService8 all 120 # unavailable service
11:49:57> GrantAccess response for SecService8:all: The requested service does not exist.
11:49:58> Command: o SecService7 operation1 operation2 # unavailable service name
11:49:58> GrantOwnerRights response for SecService7: A service with this name already exists.
11:49:59> Command: o SecService8 operation1 operation2 # success
11:49:59> GrantOwnerRights response for SecService8: OK
11:50:00> Command: i SecService8 operation1 # success
11:50:00> Invocation response from SecService8:operation1: Response from Service8:operation1
11:50:01> Command: i SecService8 operation3 # unavailable operation
11:50:01> Invocation response from SecService8:operation3: Unavailable service or operation.
11:50:02> Command: d user4 SecService8 operation1 120 # inexistent user
11:50:02> DelegateRights response for user4: The user is not registered.
11:50:03> Command: d user1 SecService9 operation1 120 # unavailable service
11:50:03> DelegateRights response for user1: The requested service does not exist.
11:50:04> Command: d user1 SecService1 operation1 1000 # time exceeds access right time limit
11:50:04> DelegateRights response for user1: No rights to access this service
11:50:05> Command: d user1 SecService8 operation1 600 # success
11:50:06> DelegateRights response for user1: OK
11:50:07> Command: s 200 # sleep
11:51:47> l perm # access to services 1-6 expired
11:51:47> GetAllServices response: OK
 SecService8
 operation1 owner

 34

Secure access to Cloud services using BlobSeer

 operation2 owner
11:51:48> Command: i SecService1 operation1 # access rights expired
11:51:48> Invocation response from SecService1:operation1: No rights to access this service
11:51:49> Command: e # logout
11:51:49> Logout response: OK

Check delegation for user1
11:54:01> Command: a user1 user1 10 # check delegation
11:54:02> Authentication response: OK
11:54:03> Command: i SecService8 operation1 # success
11:54:03> Invocation response from SecService8:operation1: Response from Service8:operation1
11:54:04> Command: i SecService1 operation1 # fail
11:54:04> Invocation response from SecService1:operation1: No rights to access this service

7.2 Performance testing

7.2.1 ACL scaling

Test setup

We have build an ACL with 50 entries and measured the ACL iterating time
and the overall invocation security check time (authorization, service availability,
access rights, writing to access logs) for service operations that correspond to
the 5th, 10th, … and 50th ACL entry.

Test results

Because only one ACL entry is read at a time and due to the processing
time for an entry, the access rights verification time grows proportional to the
ACL size, with a 1:1 ratio. However, the size of the ACL has less impact on the
total time of invocation verification.

 35

0 10 20 30 40 50 60

0

10

20

30

40

50

60

ACL iterating time

ACL

T
IM

E
 (

m
s)

0 10 20 30 40 50 60

0

10

20

30

40

50

60

70

80

Check invocation and check ACL time

check
invocation
check ACL

ACL

T
IM

E
 (

m
s)

Secure access to Cloud services using BlobSeer

 The time-ACL size ratio for service invocation is 1:5. The results are
influenced by the read and write speed of BlobSeer files and by the read speed
of the higher level write function, discussed in the Implementation details
section. The best results were obtained using 4KB pages, considering that the
record sizes are: 64B for status files, 128B for log files, 128B for ACL files, etc.
The ACL size has insignificant impact on the overall invocation time, because of
the web server response time, SOAP message processing and transport
overhead.

7.2.2 Proxy service overhead

Test setup

For this test, we have deployed a demo web service and corresponding
proxy service (SecService1) and a secured service that embeds all the secure
access logic (SecService0). In order to obtain the maximum overhead the proxy
service is responsible for, the demo service is a “dummy” service that doesn't
perform any additional computation. To eliminate the transport overhead, all
tests have been performed on the local machine. We have performed five series
of 30 invocations for both services and computed the average invocation time for
a constant ACL size (small size). We have performed another series of tests for
increasing ACL sizes (starting with 50 entries). The overhead percentage was
similar for both cases.

Test results

 36

1 2 3 4 5

0

20

40

60

80

100

120

140

Proxy overhead for incresing ACL size

SecService
0
SecService
1

1 2 3 4 5

0

10

20

30

40

50

60

70

80

90

Proxy overhead for reduced ACL size

SecService
0
SecService
1

Secure access to Cloud services using BlobSeer

SecService0 SecService
1

Overhead(%
)

82 100 18

86 109 21

88 115 23

93 118 21

100 120 16

Average overhead 19.8

The 20% overhead represents the maximum theoretical overhead because
we tested with dummy services that don't add to the overall computation time.
When adding this security layer on top of real web services with large running
times, the time needed for the security service will be the same but the
overhead will be significantly lower. In conclusion, the performance loss is not
significant. We have implemented a flexible and generic solution that offers
secure access to any web service in a Cloud environment, by using proxy
services, without adding much overhead to the system.

8. Conclusions and Future work

We developed a secure layer for web services in Cloud Environments. This
novel approach offers a high degree of security through authentication,
authorization and delegation.

This project has managed to integrate the BlobSeer storage system with
web services. The experimental results have concluded that BlobSeer is very
efficient in allowing transparent fine-grain access to massive security related
data, as access to BLOBs data doesn't effect the system's performance.

The authentication mechanism of our solution allows single sign-on access
control, simplifying access management for both the system and its users.

The Service Manager allows secure registration and authentication that
protects both the client and the system. In order to authorize access to other
services after login into the system, the security manager grants users security
tokens associated with an expiration date, that need to be validated by each
service the users will invoke. The authentication process uses encryption in order
to protect the password and the access token, while the timestamp will prevent
reply attacks.

In order o allow a flexible way to deploy new services, we have separated
the functional layer of a service from the secure access layer without affecting
the invocation performance.

Because Clouds provide services on a pay-per-use basis, the access
control system allows a fine-grain representation of the user's permission to use
these services. Our project uses a representation that is based on clients
capabilities to access individual operations exposed by web services for a given
amount of time.

 37

Secure access to Cloud services using BlobSeer

This project offers access control management for individual users. The
granularity of access rights is appropriate for Cloud Software as a Service clients.
The access control lists contain individual permissions for service operations with
a time limit. Because Cloud clients are both individuals and organizations, a
possible extension of this project would be adding group access control
management.

The role based access control model is more appropriate for organizations
access control. A RBAC model for Cloud organization clients should be based on
the following rules: permissions are associated with roles and not users, each
user will be assigned one or more roles (that can also be revoked), a user can
have more than one role simultaneously, a user can change its role during a
session.

This project is focused on the Software as a Service aspect of Cloud
computing. The access control model allows a user to become owner of a new
web service, but the deployment process is manual. In order to offer Platform as
a Service functionality, the deployment process should be automatic.

B I B L I O G R A P H Y

[1] B. Nicolae, G. Antoniu and L. Boug ́ e, “BlobSeer: Efficient Data Management for Data-
Intensive Applications Distributed at Large-Scale ”, published in “24th IEEE
International Symposium on Parallel & Distributed Processing: Workshops and Phd
Forum (IPDPS '10) (2010) 1-4 ”

[2] B. Nicolae, G. Antoniu and L. Boug ́ e, ”Distributed Management of Massive Data: an
Efficient Fine-Grain Data Access Scheme ”, October 2008

[3] B. Nicolae, G. Antoniu and L. Boug ́ e, “BlobSeer: How to Enable Efficient Versioning
for Large Object Storage under Heavy Access Concurrency ”, published in "2nd
International Workshop on Data Management in Peer-to-peer systems (DAMAP
2009) (2009)”

[4] B. Nicolae, G. Antoniu and L. Boug ́ e, “Enabling High Data Throughput in Desktop
Grids Through Decentralized Data and Metadata Management: The BlobSeer
Approach ”, published in "Euro-Par 2009 (2009) 404-416"

[5] B. Nicolae, G. Antoniu and L. Boug ́ e, Diana Moise and Alexandra Carpen-Amarie ,
“BlobSeer: Next Generation Data Management for Large Scale Infrastructures ”,
August 24, 2010

[6] D. Chappell and T. Jewell , “Java Web Services”, O'Reilly , First Edition March 2002 ,
pp. 6-7, 77, 100, 21, 231-245

[7] E. Cavanaugh , “Web services: Benefits, challenges, and a unique, visual
development solution ”, Altova, 2006

[8] R. Englander , “Java and SOAP”, O'Reilly, Edition May 2002 , pp 18-33.
[9] B. Spies, http://www.ajaxonomy.com/2008/xml/web-services-part-1-soap-vs-rest ,

posted on May 2nd, 2008
[10] J. Newmarch , “A RESTful Approach: Clean UPnP without SOAP ”, IEEE Consumer

Communications and Networking Conference, 2005

 38

Secure access to Cloud services using BlobSeer

[11] C. Pautasso, O. Zimmermann and F. Leymann , “RESTful Web Services vs. “Big” Web
Services: Making the Right Architectural Decision ”,

[12] The Apache Software Foundation, http://axis.apache.org/axis/java/user-guide.html
[13] *** “Introduction to Cloud computing ”, ThinkGrid, 2008
[14] G. Boss, P. Malladi and all, “Cloud Computing ”, Copyright IBM Corporation 2007
[15] T. Winans and J. Brown, “ Cloud computing - A collection of working papers ”,

Deloitte Development, 2009
[16] B. Khaund, http://www.codeproject.com/KB/webservices/CloudSaaS.aspx , posted on

Dec 30 2009
[17] M. Bishop, “Computer security: art and science” , Pearson Education, Inc, 2003, pp

31-32.
[18] E. Simon, P. Madsen and C. Adams, “An Introduction to XML Digital Signatures”

August 08, 2001
[19] D Gollman, “ Computer sercurity”, 3rd edition John Wiley & Sons, Ltd, 2011, pp. 71.
[20] S. Seely “Understanding WS-Security”, Microsoft Corporation, October 2002
[21] J. Crampton and H. Khambhammettu , “Delegation in Role-Based Access Control ”
[22] The Apache Software Foundation, http://axis.apache.org/axis2/java/core/docs/mtom-

guide.html
[23] W. Khattak, “SOA Pattern (#14): Logic Centralization”, InformIT online magazine,

June 2010

 39

http://axis.apache.org/axis2/java/core/docs/mtom-guide.html
http://axis.apache.org/axis2/java/core/docs/mtom-guide.html

