POLITECHNICA UNIVERSITY OF BUCHAREST
FACULTY OF AUTOMATIC CONTROL AND COMPUTERS
COMPUTER SCIENCE DEPARTMENT

Computer Science
& Engineering
Department

DIPLOMA PROJECT

BlobSeer Client Access Control

Thesis supervisor: Raluca Andreea Baban
Prof. Dr. Ing. Valentin Cristea
As. Drd. Ing. Catalin Leordeanu

BUCHAREST

2011

Table of Contents

IEEOAUCTION ...ttt sttt et et et e st e e b e sb e e bt e bt enbeembesatesaeesbeenbeeneeenteeneeas 4
1.1 DiStrIDULEA SYSTEIMSveetieiieiieiieiieette ettt ettt ettt se e e st e e st e e teeateeateebeesbeesbe e beenbeeabesatesaeesaeenseeneeeneeeneens 5
1.2 Distributed data MAaNQZEMEIL.cccueitertiertierieeieeteete st estte st et eteesteeseesseesbeesbeeaeetesatesaeesseenseenseeneeeneens 5
1.3 SECUIILY ISSUCS c..veueeueitteieeteeteeit et ett et e bt et et et e s bt e sht e bt e bt est e eateebteebaenb e e bt e bt embeeabesatesueesbeebeenteenneeanens 6

CREIAEA WOTK ..ttt ettt et b e b e b et e e et s e b bt et et e b eane s 7
2.1. Hadoop Distributed File SYSIEIMooueiiiiriiiiiiiieientenitetet ettt ettt 7
2.2 AMAZON S3 .ttt ettt et sttt ettt e a e h e bt et et et sae e saeesae e bt eneenreeanens 9
2.3 LUSHE FIIE SYSIBIM...ceiuiiiiiiiiiiieiie ettt ettt ettt ettt et ettt e st e ettt e s it e e bt e e sabe e st e esabaessteesabeensseesnseennne 10
2.4 NEtWOTK FIlE SYSTEIM . ..eiitiiiiiiiiieiiieete ettt ettt ettt e st ettt e st e e bt e e sabe e st e e sabeessteesabeessseessseenane 12

. Security for data ManagemMENt SYSIEINSceueeurererteruertenterteetteeetetestentesreeseeseentensessesresseeseeneensensensensesuesseene 15
3.1 SECUIE COMIMUIICALIONevveeueeeieeeieeeeneteteeneeestesseeseesseensesaeesaeesseenseenseensesssesseesseenseensesnsesneesseenseenseensens 15
3.2 SECUTE ACCESS.c.uveeureeutierieerttesteeeteesttesutee s bt eeuteesabeeeateesabeesateesabeeeateesabeesabeesabeesabeesabeesabeesabeesaseesabaenasees 17
3.2.1 AUTNENTICALION ...ttt ettt e bt ettt st e s a e st e e bt em b e eateeseesb e e beenbeemteeatesaeenbeenseenteeneeas 17
3.2.2 AUTNOTIZALION.etietietiete ettt ettt b ettt st e s a e e st e et e et e e s e eseesb e e beenbeemeeeatesaeenbeeseeneeeneens 18
3.3 SeCUrity MANAZEIMEILcvevuiriirrirtieuteiteteteterte st et et et et etestesteebesaeeue et estensestesbesaeebeeaeensensensensesaeesesueens 19

. INtroduction t0 BIODSEETcc..eoiiiiiiiiiiiiiieee ettt sttt ettt 20
4.1 BlODSEET ATCHILECTUTIEceuteiutientiiiiieiteittenttete et ettt ettt ettt sbt e s bt et et et sbaesbee bt e beenbeenbesmeesaeenne 20
4.2 MLAIN FRATUTES....c.uveeuiiiieieeiteteete ettt ettt et e ettt b et e bt et sae e saeesbeemae et e eanesbnesbe e be e beemneemnesaeesueenne 21
4.3 A practical 100K at BIODSEETc...eiiiiiiiiiiiiiiiieciee ettt sttt sttt sb e st esbeesateesbeenaee 22

. Adding access CONIOl 10 BIODSEETcccuuiiriiiiiiiiiiiiieeeeet ettt ettt s e e steesateesbeenaee 25
5.1 Adopted security structures and MOAEIS.........ccevereririeiiirineneneee ettt st 25
5.1.1 OpenSSL: X.509 and RSA oottt ettt ettt st e sttt e enteenaesreesneennes 25
5. 1.2 RBAC, TBAC ANd ACLS ...outieiieiieeiieteeteee ettt ettt ettt et et e e eesaeesnee st eseenseenseenaesneenseennes 26
5.2 BlODSEET SECUIILY LAYET ...cuveiuiiiiiieiieitietiete ettt ettt ettt ettt sae et e b et e et eeseesbeenbeenees 27
5.3 AlOrithms and SCHEIMAScc.eeuiiiiiieiiee ettt ettt et et sae et e b et et e e beesbeenbeenaes 27
5.4 TMPlementation AELALLSeecuiiiiiieitiet ettt ettt b ettt esae e bt et e et e eateebeesbeenbeenaes 31
5.4.1 USETUL IIDIATIES ...ttt sttt ettt et ettt sbe et et et e et e sbaesbeenbeenaes 31
5.4.2 Written classes, handles and MethOdScooovvvviviiiiiiiiiiiiiieeeeeeeeeeeeeees 31

- EXPErimental TESULLSc.eeiuiiiiiiiiieeitet ettt ettt et st st sttt et et ea s e sbaenbe e beenees 34

. Conclusions and fULUIE WOTK........cccuuviiiiiiiiiiiiiiiee ettt e e eee e e e e e eeeaareeeeeeeeesntrereeeeeeeenanenees 35

ABSTRACT

In recent years large scale distributed systems have enjoyed growing attention from the IT
industry as a viable solution for managing large amounts of data. As more applications are being
implemented as to sustain or use such systems, an important issue arises, regarding both the
application’s and the system’s security.

In this thesis we propose a novel security Layer for the BlobSeer data management
system. We discuss what security actually means for a distributed file system as well as have a
look at a few good-practice security models and algorithms available for data management
services. In particular, we discuss BlobSeer’s architecture and mode of operation whilst proposing
a number of security enhancements to ensure a practicable and secure client access
management.

RALUCA ANDREEA BABAN

1. Introduction

It is considered that we live in an informational era. More and more applications are
working with huge quantities of data and it is considered that every year approximately 50% more
information is generated than the previous year, predictions existing that by the end of 2011 the
world will have generated 1.8 zettabytes. Apart from this, more applications are working with huge
guantities of data (data-intensive applications). Government and commercial statistics, cosmology,
genetics and bio-engineering are just some domains where it is crucial that when working with large
amounts of information, effective data management is achieved, free from any security incidents.

Obtaining a scalable and secure data management system is a true goal in itself, more so
when not every system user has the best intentions at heart regarding said system. Of course we are
referring to viruses, spy-ware, mall-ware, system attacks, and other objects and actions that may
harm a system and/or compromise its recourses. It is not enough that only a system’s components
are secure, but special attention must be given to who is allowed to access the system, and what
actions this person is allowed to perform, on what system objects.

Although BlobSeer [1] is a well rounded distributed file system, it is our opinion that it lacks
a viable enough security system, or to be more specific, a viable enough client access control. The
current implementation of such a feature is based on ip-filtering, insufficient for machines behind
NATs (Network Address Translators) and with all the tools on the IT market or open-source tools
available for security, it is a pity not to take advantage of them to implement a well rounded security
system that complies or even exceeds the security standard for distributed systems. The main
objective of this thesis is to propose an efficient client access control strategy for the BlobSeer
system.

This main objective may be achieved, by fulfilling the following sub-objectives:

- investigate and discuss already existing technologies regarding client access control in
data distribution systems

- analyze a number of security strategies and algorithms.

- understand the BlobSeer architecture, and mode of operation.

- formalize a personalized BlobSeer client access control system.

- evaluate the effectiveness of the proposed system.

A discussion about security systems and distributed systems in general is found in chapter
1, followed by a more detailed look at systems similar to BlobSeer (in chapter 2), and at the true
meaning of security in distributed data management systems (in chapter 3). In chapter 4 we
familiarize ourselves with BlobSeer, its architecture, main features, primitives and algorithms. Our
proposals for a BlobSeer security Layer is thoroughly handled in chapter 5. Chapter 6 presents a
series of tests and their conclusions regarding the security Layer implemented; suggestions are made
regarding possible future work in chapter 7, as well as a number of final conclusions regarding the
thesis.

BlobSeer Client Access Control

1.1 Distributed Systems

We live in an era where a system’s capability of storing and processing large quantities of
data is becoming a requisite feature. The chosen solution for this problem is the adoption of a
distributed computer paradigm in which a distributed service infrastructure is adopted, as to achieve
scalability and performance. Such a system comes in a number of forms, from autonomous
processes that run on the same physical computer and interact through message passing to
computer networks where individual computers are physically distributed within a random
geographical area. When we refer to a distributed system in this thesis, we refer to a group of
autonomous computers that communicate with each other through a computer network in order to
achieve a common goal.

In recent years, distributed systems have undergone an unprecedented growth. Today,
through local and wide area networks, a very large number of computers and micro-computers are
connected world-wide. If we also take into account notebooks, mobile telephones and other
computing devices, we will find millions of machines that have the potential to communicate with
each other by means of cable, infra-red, Bluetooth etc. If we are to take into consideration the fact
that each machine has at least one central processing unit (CPU) that is not used 100% of the time,
and that each machine has some free storage space, then, as whole, we have an enormous storage
capacity and processing power available for use, at a low cost: instead of buying and managing
hardware, one may rent virtual machines and storage space.

1.2 Distributed data management

Another important aspect of a distributed system is represented by data management,
which, according to the DAMA Data Management Body of Knowledge (DAMA-DMBOK), has the
following definition: “Data management is the development, execution and supervision of plans,
policies, programs and practices that control, protect, deliver and enhance the value of data and
information assets”[2].

Distributed data management, not only refers to the way data is managed, but also the
way it is distributed over a network. Problems such as fault tolerance, performance, throughput,
scalability are critical to the operation of a data management system(3].

There are many advantages in using a distributed data management system [1], such as
better data placement (closer to it's source or where it is most needed), higher data availability
through data replication, higher fault tolerance through elimination of a single point of failure,
potentially more efficient data access (higher throughput and greater potential for parallelism),
better scalability, and the list goes on. Because of these advantages, in recent years there has been a
growing interest in this specific type of data management and a number of systems have been
developed, with the distributed data architecture as their basis, to offer clients the means of
handling large quantities of data in an easy, transparent manner.

Out of the many distributed data management systems, we will take a quick look in this
thesis at Hadoop Distributed File System (HDFS) - “the primary storage system used by Hadoop
applications. HDFS creates multiple replicas of data blocks and distributes them on compute nodes
throughout a cluster to enable reliable, extremely rapid computations”; at Amazon S3 — “a simple
web service interface that can be used to store and retrieve any amount of data, at any time, from

RALUCA ANDREEA BABAN

anywhere on the web. It gives any developer access to the same highly scalable, reliable, fast,
inexpensive data storage infrastructure that Amazon uses to run its own global network of web
sites”; we will also take a look at Lustre File System — “a massively parallel distributed file system,
generally used for large scale cluster computing” and at NFS (Network File System) — a client-server
file system developed by Sun Microsystems, that allows users to access files across a network as if
they resided in a local file directory.

1.3 Security issues

Independent of the type of infrastructure used, security remains a major issue for any
system, more so in a distributed context where we have to deal with decentralized control, remote
data access as well as critical data manipulation. Some important security aspects [4] for distributed
computing, which will be looked into, later in this thesis, are:

Data confidentiality - no one else but the allowed users may have access to data; outsiders
may not have access to a conversation between parties using a particular system; no system
information may be accessed by unauthorized users.

Data integrity - data that has a complete or whole structure on at least one machine that
makes up the system; ensures that data is not altered by unauthorized users in a way that is
undetectable by authorized users.

User authentication - the process of verifying a claim made by a subject, that it should be
allowed to access and modify a specified object.

User authorization - the process of verifying that an authenticated subject has the
permission to perform a certain operation or access certain resources.

Access control - the process of modifying a subject’s permissions to perform operations
and access data — implemented by the above mentioned user authentication and user authorization,
amongst others.

Availability - the process of ensuring that a system is operational and functional at any
given moment, something achieved through redundancy.

It is important for a computer system to have a trusted computing base (TCB), which
refers to the whole set of hardware, firmware and software components that are critical to the
system’s security, in the sense that bugs or vulnerabilities occurring inside the TCB might jeopardize
the security properties of the entire system. Apart from this, parts of a computer system outside the
TCB must not be able to misbehave in a way that would leak any more privileges that are granted to
them in accordance to the system’s security policy. The careful design and implementation of a
system’s trusted computing base is crucial to its overall security.

BlobSeer Client Access Control

2. Related work

As discussed in chapter 1, there are quite a few applications out there, which implement a
distributed data management system. In the coming chapter, we talk about the applications
mentioned earlier (in chapter 1.2), showing their architecture, basic data handling principles, as well
as underlining their adopted security protocols. This will help us better understand what security
features a distributed system should have as well as the effectiveness of said security features.

Management systems similar to BlobSeer, such as the Hadoop Distributed File System,
Amazon S3, the Lustre File System and the Network File System, are treated in the following
paragraphs, taking a look at their approach to working with distributed data and their approach to
assuring a secure system.

2.1. Hadoop Distributed File System

The Hadoop Distributed File System[5] is the primary storage system used by hadoop, a
popular open-source MapReduce framework that has been widely adopted in the IT industry, by
cooporations such as Yahoo! and Facebook. HDFS, a java written application, has a master/slave
architecture at its basis. It works with large data sets of gigabytes to terabytes size and provides an
interface for applications to move themselves closer to where the data is located. The master server
in a HDFS cluster is a NameNode that manages the file system namespace and regulates access to
files by clients. DataNodes, one per node in a cluster, manage storage attached to the nodes that
they run on. Internally, a file is split into one or more blocks which are stored in the above
mentioned DataNodes and replicated, for fault tolerance. These DataNodes are an important
component of the system, being responsible for serving read and write requests from the file
system’s clients as well as being responsible for block creation, deletion and replication, as the
NameNode requests (block operations). In Fig. 1, we have an illustration of the HDFS architecture
explained above.

HDFS supports a traditional hierarchical file organization, exposing a file system namespace
and allowing user data to be stored in files. Apart from the capability of working with quotes and
hard or soft links, the system is able to create directories, store files in said created directories,
create, remove and move files. The HDFS permissions system is designed to prevent accidental
corruption of data within a group of users who share access to a cluster. Thus, HDFS security is based
on the POSIX model of users and groups. Security permissions and ownership may be changed by
using —chmod, -chown, -chgrp similar to the POSIX/LINUX tools. The Hadoop system is programmed
to use the users current login as their Hadoop username, and the users current working group list is
considered as the group list in Hadoop. HDFS itself does not verify that this username is genuine. The
username that starts the Hadoop process is the super-user. There is also a super group, whose
membership is controlled by the configuration parameter dfs.permissions.supergroup. HDFS does
not enforce permissions except when permission-related operations take place (such as —chmod),
otherwise the permission system may be disbled by setting to false the following option:
dfs.permissions.

Although Hadoop is used on a large scale by the cloud community, it has some major
security flaws [6],[7] which are deemed to be solved by the end of this year: first of all, Hadoop
services do not authenticate users or other services and as a result, users may impersonate other

RALUCA ANDREEA BABAN

users, malicious network users to impersonate cluster services; secondly, DataNodes do not enforce
any access control on access to its data blocks, thus an unauthorized client may read or write data
blocks. This being said, some Hadoop deployments use HDFS proxies for server to server bulk data
transfer. Hadoop uses the proxy IP addresses, and a database of roles in order to perform a minimal
user authentication and authorization.

Metadata (Name, replicas, ...):
/homeffoo/data, 3, ...

Me’[adatf:!_gpg"' Namenode

Block ops
Read Datanodes Datanodes
] | |
0 & - - Replication 2 = B
]] u Blocks

“ \/ . J/
N Y

Rack 1 Write Rack 2

Fig. 1 The HDFS architecture

To improve security, programmers chose to use a Simple Authentication and Security Layer
(SASL) with Kerberos instead of SSL, because of Kerberos’s symmetric key operations, which are
faster than the public key operations SSL provides and because of Kerberos’s simple user
management interface, for example, revoking a user can be done simply by deleting the user from
the centrally managed Kerberos KDS (key distribution center). Communication between the client
and the HDFS service is composed of two halves: a RPC connection from the client to the NameNode
and block transfer from the client to the DataNodes. The RPC connection can be authenticated by
Kerberos or via a delegation token (shared secrets between the NameNode and the client that allow
authentication without using the Kerberos Key Servers).

To conclude, main concerns regarding HDFS security revolves around the poor default SASL
Quality of Protection, the wide distribution of symmetric cryptographic keys, incomplete pluggable
web Ul authentication and the use of IP based authentication, elements which hopefully will be
improved in the near future.

BlobSeer Client Access Control

2.2 Amazon S3

Amazon S3 is an online storage service offered by Amazon Web Services [8] that provides
storage through web service interfaces such as REST, SOAP and BitTorrent. Details about S3’s design
and architecture are not made public by Amazon, but it is a known fact that Amazon uses a series of
technologies to power parts of the Amazon Web Service (AWS), such as S3. One such technology is
Dynamo, internally designed by Amazon to address the need for an incrementally scalable, highly-
available key-value storage system. It has properties of both databases and distributed hash tables,
and is considered to be an eventually consistent data store (all updates reach all replicas eventually,
due to implemented replication techniques).

Dynamo [9] is a completely decentralized system with minimal need for manual
administration, storage nodes being able to be added and removed without requiring any manual
partitioning or redistribution. Data is partitioned and replicated using consistent hashing, and
consistency is obtained by object versioning. Consistency amongst replicas is maintained by a
guorum-like technique and a decentralized replica synchronization protocol. Dynamo employs a
gossip based distributed failure detection and membership protocol.

S3 [10],[11] stores objects of up to 5 terabytes of data, each accompanied by 2 kilobytes of
metadata. The objects are stored into buckets owned by an Amazon Web Service account, and
identified by a unique, user-assigned key. Buckets and objects can be created, listed and retrieved
using either REST HTTP interface or a SOAP interface. The user is able to control who is able to
upload or download data into his Amazon S3 bucket.

Buckets are containers for objects stored in Amazon S3 [8], they serve several purposes:
they organize the Amazon S3 namespace at the highest level, they identify the account responsible
for storage and data transfer charges, they play a role in access control (the access control policy
associated with a bucket governs the way an object is created, deleted and enumerated) and they
also serve as the unit of aggregation for usage reporting. They may be configured to support
versioning; also, they are designed in such a way as to enable HTTP URL addressing
(http://s3.amazonaws.com/bucket/key) with an option that allows setting a time-bound validity.

Objects are the primary entities of the Amazon S3 architecture [8]. They consist of object
data, opaque to Amazon S3, and object metadata, a set of name-value pairs that describe the object
(object metadata contains default metadata, such as the date last-modified, standard HTTP
metadata such as Content-Type, as well as custom metadata, defined by the developer at the time
the Object is stored).Amazon S3 also makes use of keys, to uniquely identify an object within a
bucket. Every Object has just one key, but may have different version ID, if versioning is enabled.

Requests are authorized using an access control list (ACL) associated with each bucket [11]
and object, each ACL custom implemented by the developer. When a bucket or an Object is created,
a default ACL is created, that grants the owner full control over the resource. Permissions to
read/write a bucket or an object, or full control permissions can be granted by the element’s owner,
to an AWS account, or one of the predefined Amazon S3 groups.

Apart form controlling ACLs, the owner of a bucket, may develop bucket policies (in JSON)
to define access rights for his resources: allow or deny bucket-level permissions, deny or grant
permissions on an object from the bucket.

http://s3.amazonaws.com/bucket/key

RALUCA ANDREEA BABAN

In 2011, a virtual application has been developed that allows the encryption of S3 objects
by an AES-256 algorithm and assures data integrity with the SHA-1 algorithm [10],[11], upon
installation into ones AWS account. Other from this application, S3 has an option to encrypt data
with Blowfish or AES. Also, S3 protects online storage via password, although, due to the bucket
policies, such protection is unnecessary, if the untrusted party doesn’t have privileges on that
machine.

In conclusion, Amazon S3 is a safe distributed data management system that allows the
owner of buckets, and Objects, to implement the security strategy of his or her choice: ACLs, bucket
policies, key generation, encryption/decryption etc, but the user level security may be considered
insufficient since it is only based on a query-string authentication mechanism (which passes three
additional URL parameters, the AWS access key, expiration of the URL and the signature which is
actually an encrypted string) which guarantees that a recourse is unavailable to someone who does
not have the signature, so misplacing of the URL may easily compromise ones security.

2.3 Lustre File System

Lustre [13] is an open-source massively parallel distributed filesystem developed and
maintained by Sun Microsystems. Lustre, an object-based filesystem , with data usually in ext4
format, supports tens of thousands of clients, ten of pentabytes of storage and hundreds of
gigabytes per second of |0 throughput and is very popular in scientific supercomputing. It is
composed of metadata servers (MDSs), object storage servers (0SSs) and clients; it has a total data
capacity the sum of all individual object storage targets (OSTs).

Fig. 2 illustrates the Lustre architecture [13].

Metadsis il hetsdas
Server (MDS) g Targed (MOT)
a .
“~ W e sirage
Seners (055)
High-5pesd. Intemonmnec —
s
p— s =
- g--s
L= |
o o . =
s = ﬂ -
Lusre Clients ‘}g_% =
Object Siorage
Targets [QST)

Fig. 2 The Lustre architecture
Metadata Servers (MDS) provide metadata services (used by metadata clients) and
manages one metadata target (which stores file metadata: file names, directory structures, access

permissions, etc).

Management Servers (MGS), hold configuration information of the Lustre filesystem.

BlobSeer Client Access Control

The object storage servers (0OSSes) expose block devices and serves data. They are the
clients of these services, and the store at least one object storage target (entities which store file
data objects).

The MDT, OST [13],[14] and client may be on the same node, but in a typical scenario these
functions are on different nodes, communicating over a network. Lustre’s network layer (LNET)
supports a number of network interconnections, including native Infiniband verbs, TCP/IP on
Ethernet, and other network technologies. To improve throughput and reduce CPU usage, Lustre
takes advantage of remote direct memory access.

Being a POSIX-compliant filesystem, Lustre presents a unified filesystem interface
(permitting operation such as open(), read(), write(), etc) to the user, a POSIX characteristic made
possible in Linux by a Virtual File System (VFS) layer and also in Lustre due to a layer, hooked to the
VFS, called llite. A file operation that reaches llite must go through the whole Lustre filesystem.

Lustre also has a distributed lock manager, to protect the integrity of each file’s data and
metadata. The metadata locks are managed by the MDT and are split into bits that protect the
lookup of the file (file owner and group, permissions and mode, and ACL), the state of the inode
(directory information, timstamps, etc) and the layout (file striping). Access and modification of a
Lustre file is cache coherent among all the clients.

Security wise, all client/server communications in Lustre are coded as RPC requests and
responses, also for improved security and scalability, clients may not modify directly the objects on
the OST filesystem, but delegate instead the task to OSSes.

Lustre as the following security features [14]:

- the ability to have TCP connections only from privileged ports.

- server-based group membership handling.

- a security model that follows that of a Unix files system, enhanced with POSIX ACLs
(system object permissions, read(r), write(w) and execute(x), that define three classes of user:
owner, group and other).

- the inability of clients to see stale data or metadata, due to the implemented atomic
operations.

- the recording of changes to feed into an archiving system.

- root squash functionality, which controls super user access rights to a Lustre file system
(this consists of re-mapping the user ID (UID) and group ID (GID) to that of the root user UID and
GID, specified by the system administrator, via the MGS. This feature allows the administrator to
specify the UID/GID set of a client for which the re-mapping does not apply).

Unfortunately Lustre lacks built-in encryption features and for future work Lustre plans to
use Kerberos for computer network authentication Furthermore, there is no restriction on client
access (a possible work-around being to set up IP firewall rules to block clients), but even so, Lustre
is a highly-used file system, integrated with several vendor’s kernels and widely used by the IT
community.

RALUCA ANDREEA BABAN

2.4 Network File System

The Network File System (NFS) [15] is a client/server file system, usually associated with
UNIX [15], developed by Sun Microsystems that allows users to remotely access files, and treats
them as if they resided locally. This is accomplished by the processes of exporting remote filesystems
located on the server (the process by which NFS server provides remote clients with access to its
files), and mounting locally, on the client and to the client system (the process by which file systems
are made available to the operating system and to the user). It is designed not to depend on the
computer, operating system, network architecture nor transport protocol. NFS uses a model based
on the RPC protocol, for data exchange between client and server, and based on the external data
representation (XDR) protocol, with the goal to define a common method for representing common
data types, for data translation between heterogeneous systems.

The operation of NFS is defined in the form of three main components (which are more
clearly portraid in Table 1) that can be viewed as logically residing at each of the three OSI model
layers corresponding to the TCP/IP applications layer [16]. These are: the RPC protocol (a generic
session layer for client/server internetworking functionality), the XDR protocol (resides on the
presentation layer) and NFS procedures and operations (procedures and operations that usually
function at layer sever of the OSI model, and that represent particular tasks to be carried out on the
file over the network — the actual exchange of information between an NFS client and server).

Being similar in construction with the UNIX filesystem model, NFS has a similar Access
Control Lists (ACL) support [17], for authentication and authorization. The file system takes into
consideration the file’s access controls, the caller’s credentials, and other local system restrictions
that might apply. NFS provides support to Role Based Access Control (RBAC), it provides its own ACL
protocol, but also supports ACLs proprietary to AIX servers. RBAC support means that a non-root
user is able to execute NFS commands once the administrator assigns the RBAC role of the command
to the user.

A file can be uniquely specified by using its file name and path name, files and directories
are organized as one would see in on a UNIX platform: inodes, dentrys etc. Each file has a set of
permissions (read, write and execute) associated to it, to determine who has what permissions. File
permissions are based on the type of user attempting to use the file: user, group, other (permissions
given to user apply to the owner of the file, permissions given to group apply to a group of users to
which the file belongs, and permissions given to other apply to users other than the owner and
members of the owner’s group).

Security wise, apart from the above discussed ACLs, NFS uses a few more security
implementations that will be discussed in the up-coming paragraphs.

The portmapper [18] keeps a list of what services are running on what port. The list is
used by a connecting machine to see what ports it wants to talk to, as to access certain services.
There are two important files: /etc/hosts.allow and /etc/hosts.deny which the portmapper uses for
usage control.

Root_sqash is a parameter that helps the server decide not to trust root requests from the
client, but the root user on the client may use the su command to become any other user, to access
and change that user’s files. The TCP ports 1-1024 are reserved for root’s use, so a non-root user
cannot bind these ports.

BlobSeer Client Access Control

Table 1
NFS Components
Layer OSI Layers NFS Layers
Number
7 Application NFS
6 Presentation XDR
5 Session RPC
4 Transport TCP / UDP
3 Network IP
2 Data Link Ethernet
1 Physical Ethernet

The client can control the amount of trust given to the server by the nosuid mount option.
Setting this option will forbid suid programs to work of the NFS file systsm. Suid programs, such as
unix’s passwd, set the id of the person running them to whomever is the owner of the file. One can
also forbid the execution of files on the mounted file system altogether with the noexec option. The
broken_suid option, is used for protection against older programs that used to rely on the idea that
root may write anywhere. Acting on such a presumption, will break new kernels on NFS mounts.

Full file locking is supported, meaning that rpc.statd and rpc.lockd daemons mush be
running on the client in order for locks to function correctly. When an application wants to obtain a
lock on a local file, it sends its request to the kernel. If an application on a NFS client makes a lock
request for a local file, then the Network Lock Manager client generates an RPC call to the server to
handle the request. When a client receives an initial remote lock request, it registers interest in the
server with the client’s rpc.statd daemon. The same is true for the network lock manager at the
server.

RPC/DH is a protocol that uses a combination of Diffie-Hellman key exchange and DES
encryption (later updated to AES encryption). User validation is performed by the server, based on
information from the RPC request. The first time the client contacts the server, it generates a
random session key, and encrypts it with the shared 64-bit DES key. The session key is also a 64-bit
DES key. The client also generates a time-to-live value (windows), and a windows value that is one
second less than the first windows value. The two window values are then encrypted with the
session key. The server knows something is wrong if the second window value is not one less than
the firsts, then the client request will be rejected. Also, on every subsequent request to the server,
the client will encrypt the current time, using the session key. On the server side, if the timestamp is
out of the bounds of the time-to-live window, then the clients request is rejected.

RALUCA ANDREEA BABAN

Public and encrypted keys are kept in the /etc/publickey file, and the NFS server along
with a unique identifier for the machine or user owning the keys. The superuser can add user keys
using newkey —u user, which requires a password, to encrypt the private key so that it can be safely
added to the publickey maps.

When you log onto a machine running RPC/DH, the login-password supplied is used to
attempt to decrypt your encrypted private key. If the login and RPC/DH passwords do not match,
then you get an error.

It is recommended that IPchains and netfilter (depending on the different kernel
distributions) be used to implement a higher level of access security, instead of relying on the NFS
daemon. Another good-practice suggestion is to tunnel NFS through SSH (though this practice will
affect file locking, disabling it) if one does not trust the local users on the server.

NFS provides Kerberos authentication and authorization support, by making use of the
RPCSEC-GSSAPI interface defined by Sun. In addition to the three flavors of Kerberos security
(authentication, integrity checking and full privacy), the said interface will eventually support other
security flavors such as SPKM3. NFS also supports DES and AES encryption.

NFS works with superuser mapping. It is considered that root access should be granted on
a per-machine basis, thus the superuser is not given normal file access permissions. To enforce this
restriction, the root’s UID is mapped to the anonymous user ‘nobody’ in the NFS RPC credential
structure. Also, to this structure, NFS requests that do not have the necessary credentials are
mapped. Credentials can be anything from authentication information, username and password etc.

NFS has the means of protecting filesystems hosts as well as clients, for example, data may
be made available only to a selected set of machines. Also, you may specify whether the filesystem is
exported read-only, and to what host, changing the default write access enabled filesystem export.

Over all, NFS is a strong reliable and secure file system that implements a large set of
security measures, to assure customer satisfaction. And although a new version has not appeared in
some time, the current available versions are versatile enough.

BlobSeer Client Access Control

3. Security for data management systems

Security is a major issue for distributed systems, more so as the increase of connections
result in greater interdependency of the system, less centralized control and more remote data
accessing, leaving us with an environment with many challenges regarding data security
management. As presented in the previous section, all the current distributed data management
system include security mechanisms, which are critical to the usability of the filesystem. When we
talk about security, we need to talk about secure communication, secure access and security
management. This thesis will discuss all three security aspects, with an emphasis on data
management security.

First of all, secure communication refers to the prevention of unauthorized third party
interceptors accessing communications in an intelligible form or changing the communications,
while still delivering content to the intended recipients.

Secondly, when we refer to secure access we mean that a user or process may use (or may
have access to) services or recourses only if the available permissions allow it. Lastly, when we talk
about security management, we refer to key management (key creation, distribution) user
management, group management, etc.

A secure data management system must implement the above mentioned attributes -
secure communication, secure access, and security management — while making sure to cover the
security issues raised in paragraph 1.2.

3.1 Secure communication

Secure communication [19] includes means by which people can share information without
third-party interception. This is possible by adopting one ore more security methods, which will be
described in detail in the following paragraphs.

Encryption is possibly one of the most frequently used security methods adopted in a
distributed system. It consists of encrypting data with a key that only the people that are holding the
conversation know of. A key may be generated either by a symmetric-key algorithm or a public-key
algorithm.

Symmetric-key algorithms use a single shared key, that must be kept secret, in order to
keep the data safe and may be used apart for encryption, for non-repudiation purposes. The
encryption key is trivially related to the decryption key, meaning that the keys may be identical, or
that there is a simple transformation between the two. In practice, the two keys represent a shared
secret between the communicating parties. This specific algorithm may be divided into stream
ciphers, that encrypt a message bit by bit, and block ciphers, which take a whole block of bits from
the message (usually 64 bits, but there are algorithms, such as the Advanced Encryption Standard
algorithm or AES, that works with blocks of 128 bits). Apart from the AES algorithm, we have the
Data Encryption Standard or DES algorithm, the Blowfish algorithm and many others. These
algorithms are usually used mainly for encryption, it is not recommended to use them for
authentication.

RALUCA ANDREEA BABAN

Public-key algorithms (also knows as asymmetric-key algorithms, due to the was the keys
are generated) use two keys, one to encrypt the plain text and another to decrypt, neither key being
able to do both functions. These algorithms are much slower than the symmetric-key generation
algorithms. The system may be a signature verifier (of data encrypted by the detainee of the private
key), or private communication enabled, depending on the key published. The later is true if the
encryption key is published whilst the former is true if the decryption key is published. Amongst the
better known public-key generation algorithms we have the Diffie-Hellman algorithm, the Rivest,
Shamir and Adleman (RSA) algorithm and the Digital Signature Algorithm (DSA). These algorithms
used for encryption but they are also used for authentication, due to the fact that we have a private
key and a corresponding public key). Also from amongst the widely used protocols which implement
asymmetric key algorithms we mention the Secure Shell (SSH) and the Secure Socket Layer (SSL)
protocols — both represent a standard security technology that establishes an encrypted link
between a client and server, and makes sure the data remains private and integral; this is also a
good tool for client authentication.

Public-key Certificates are also known as digital certificates or identity certificates. The
main purpose of certificates is to ensure that the issuer of the public key contained in the certificate
is the same entity to which the certificate was issued. The certificate is conceived and signed by a
commonly trusted third-party, the Certificate Authority (CA). The certificate is signed after the CA
verifies that the public key matches the given identity (name, e-mail and other information). There
are a large number of applications and protocols that implement this security strategy, amongst
which probably the most widely used is the SSL protocol.

These certificates can also be used for authentication (a subject discussed in section - 2.2.2,
subsection 2.2.2.1), because of the fact that the information contained by the certificate needs to be
checked when received.

Another method for assuring secure communication is Steganography, the hiding of data
inside more innocuous data. Thus, a watermark proving ownership is embedded in the data of a
picture for example.

Identity based networks represents yet another method that assures a secure
environment for communication since the identity of the receiver and sender are known.

Anonymized networks have also recently been used to secure communication, making use
of the principle the more noise there is, the less you know where the source is. Unfortunately there
are applications that monitor communications over entire networks, so anonymized networks alone
is not enough to ensure security.

Secure RPC [20] is a security protocol built into the RPC software. It is based on DES for
encryption, and has an open-ended authentication, meaning that a variety of authentication systems
can be plugged into it, such as UNIX (used by a network service; the credentials contain the clients
host name, UID, GID and group-access list), Kerberos (a MIT authentication system that will be
discussed in section 2.2.2), DH (a combination of DES encryption and Diffie-Hellman public-key
cryptography for authentication), etc.

BlobSeer Client Access Control

3.2 Secure access

When discussing secure access in a distributed system, one automatically thinks
authorization and authentication. In the current section we will discuss both of these security
aspects (authentication is discussed in subsection 3.2.1 and authorization in 3.2.2), by example of
already existing applications, but we will also talk about access control lists and access models.

First of all, it is important that when initiating a conversation, both the client and server
authenticate themselves. In a more general manner, it is important that all the entities taking part in
the communication be authenticated correctly.

The most rudimentary form of authentication, is that achieved by sending a client’s
username and password, but this method is inadequate for a distributed system, more so it the data
in not encrypted, due to various applications that monitor network packets to find unprotected data
to use in a malicious way. There are a number of authentication protocols, some of which will be
discussed in the following paragraphs, such as the above-mentioned UNIX authentication, Kerberos
authentication.

3.2.1 Authentication

The UNIX authentication protocol [21]- amongst other applications, it is used by NFS.

- on the client side, the programmer creates a Remote Procedure Call (RPC) client handle
and then sets the authentication parameter. Each remote procedure call associated with the client
then carries a pre-defined UNIX-style authentication credentials structure, which contains
information such as client’s UNIX effective UID, client’s current group id and client host name.

- on the server side, a request handle is passed to a service dispatch routine. The handle
contains information on the service program number, service protocol number, desired procedure
number, raw credentials from wire, and credentials (in read only format). Except for the style (or
flavor) of the authentication protocol, the raw credentials from wire structure is opaque, containing
the following data: style of credentials, address of more authentication information, maximum
length of credentials. RPC guarantees that before a request is passed to the service dispatch routine,
the raw credentials from wire are in an acceptable form (thus the programmer may inspect what
style of authentication was used) and that the read-only credentials field is either null or points to a
well-formed structure that corresponds to a supported style of authentication credentials, in this
case, an authunix_params structure, for UNIX-style authentication.

SSL [22] — a certificate based authentication tool. Certificates are digitally signed
documents which bind a public key to the identity of the private key owner. With SSL, authorization
is performed by an exchange of certificates, which are blocks of data in a format described in ITU-T
standard X.509. The X.509 certificates are issues and digitally, signed by an external authority,
known as a certificate authority. A certificate contains: two distinguished names (which uniquely
identify the user), a digital signature (created by the certificate authority, using the public-key
encryption technique), the subject’s domain name, and the subject’s public key. A free variant of the
SSL tool, is the open-source OpenSSL.

Kerberos [23]- a computer-network authentication tool, which works on the basis of
“tickets” to allow nodes communicating over a non-secure network to prove their identity to one
another in a secure manner. Aside from assuring mutual authentication, this useful tool provides

RALUCA ANDREEA BABAN

authorization and message confidentiality. Kerberos builds on symmetric-key cryptography and
requires a trusted third party. It may optionally use asymmetric-key cryptography as well, in some
parts of the authentication procedure. It is based on an authentication server that at all times knows
the identities off all the clients that are logged-in. The client and authentication server share a secret
password and a session key no other entity knows about. In a standard implementation, a Kerberos
key is valid for 25 hours and is created using the DES algorithm.

3.2.2 Authorization

When we talk about authorization we talk about access rights to resources. There are
different types of access models, regarding access and regarding the flux of information. In this
thesis we will discuss some of these access models. Access rights can be discretionary (Discretionary
Access Control - DAC), meaning that users may delegate their rights to other users, or mandatory
(Mandatory Access Control - MAC), meaning that rights cannot be transferred from one user to
another.

Access Control Lists (ACLs) — when referring to a computer file system, ACLs represent a list
of privileges and permissions attached to an object (such as a process, a program or a file), which
specify access rights such as whether a subject (a user or a process) may read, write or execute an
object. Each accessible object contains an identifier to an ACL entry (or more commonly known, an
access control entry - ACE), which specifies a subject and an valid operation. When a subject
requests an operation on an ACL-enabled system, the operating system first checks to see if an entry
exists for that specific subject and for that specific object. An ACE may even determine if a user or
group of users may alter an object’s ACL.

The Graham-Denning model — presumes that every object has a subject that is its owner
(special rights on the former), and that every subject has another subject that represents its
controller (a subject with special rights on the former). This is a DAC model, and before any changes
can be made to the object, subject or rights, a set of preconditions must be met. The rights are set in
an access matrix with a row for each subject and a column for each subject and object.

The Harrison-Ruzzo-Ullman model (HRU) [24] — is similar to the Graham-Denning model
explained above. It consists of a set of generic rights R and a set of commands C. The subjects are
required to be part of the objects, so the access matrix contains one row for each subject and one
column for each object and subject. A complex command is treated as a whole, meaning that a
failing operation in a sequence will result in the whole sequence failing. A HRU sequence is secure
regarding a right “r” if no series of changes will transform the access matrix in such a way that the
right will leak (a rule “r” is considered to have leaked if after the execution of a command “c”, “r” will
exist in the access matrix in a position in which it was not, before the execution of “c”).

The Role Based Access Control model (RBAC) [25] — a role is a grouping mechanism for
subjects, based on a set of the subjects common attributes. In this model, the roles have associated
permissions, not the subjects as we have encountered before, and each subject can have one ore
more roles. These roles can be easily assigned or revoked, a user may easily go from one role to
another, roles can be contained in a hierarchy (for example the chief secretary has the role of a
normal secretary, apart from other additional rights). Although it’s easier to work with roles, there
are a few extra constraints which is wise to implement, such as Static Separation of Duty Relations

BlobSeer Client Access Control

(two roles cannot be assigned to the same user) and Dynamic Separation of Duty Relations (two
roles cannot be active at the same time for the same user). This model is DAC and MAC compliant.

The Task Based Access Control model (TBAC) [26] — adds to the traditional models
(consisting of subjects, objects and permissions), context information regarding tasks (usage and
validity counts, and authorization-steps), and each task having a state of protection (determined by
the permissions). Depending on the context, the permissions are activated or deactivated, as the
tasks evolve in time.

3.3 Security management

Security management refers to the generation and management of keys, secure group
management (adding and removing groups, users to groups), and authority delegation.

Authority delegation in this sense is enabled by using a special object (certificates or
tokens) by which the holder is granted the same (or fewer) permissions as the person who created
the object initially.

Key generation and management, this has already been discussed in the above subsections
of 2.2, as for secure group management, it is not the object of this thesis to discuss this issue due to
the fact that BlobSeer does not work with user groups but with individual users.

RALUCA ANDREEA BABAN

4, Introduction to BlobSeer

In this chapter we introduce BlobSeer, a distributed data management service, designed to
work with data intensive applications. BlobSeer’s architecture is presented, BlobSeer’s main
features, primitives, and mode of operation likewise.

4.1 BlobSeer Architecture

BlobSeer[28] consists of a number of distributed processes that communicate through
remote procedure calls. These processes and the way they interact with each other are illustrated in
Fig. 3, and are discussed thoroughly in the paragraphs to come.

- o

" Metadata k. Client ;
Providers : Meoiadala

e

-

-

AR —

#

L L

Fig. 3 Global architecture of BlobSeer

Clients — create a BLOBs and read, write and append data from or to BLOBs. It is expected
that a large number of concurrent clients simultaneously access the same BLOB. The number of
clients may vary in time, but the system is not notified of this change.

Data providers — physically store the data and manage the pages generated by write and
append requests. New providers may dynamically join and leave the system.

The provider manager — keeps information about the available data providers, available
storage space and schedules the placement of newly generated pages, according to a load balancing
strategy.

Metadata providers — physically store the metadata, allowing clients to access pages by
using corresponding BLOB versions. A distributed management scheme is adopted for the metadata,
as to allow efficient concurrent access.

BlobSeer Client Access Control

The version manager — assigns a BLOB version number to each update request (which is
represented by a write or append) and then publishes the new version number, guaranteeing total
ordering, atomicity, and that the BLOBS to which the version numbers refer to, have successfully
been generated, and that their corresponding data and metadata will never be modified again.

4.2 Main features

In the following section, we will discuss some of BlobSeer’s main features, which are
essential to avoiding data-access synchronization and to distribute the 1/0O workload [29] at a large
scale. These two elements are crucial to having a high aggregated throughput for data-intensive
applications.

Data is represented in BlobSeer as Binary Large Objects (BLOBs), consisted of long
sequences of bytes of unstructured data. A BLOB can reach sizes of up to 1 TB and can be managed
by the client through a simple access interface that enables creating a BLOB, writing and reading a
sequence of size bytes from and to a BLOB starting at offset, and appending size bytes to a BLOB.
This access interface is designed to support versioning explicitly: every time the BLOBs are modified
by a write or append a new version (or snapshot) of the BLOB is generated, rather than overwriting
any existing data. The client is allowed to read from any previous BLOB version, and even the current
BLOB version, after it is made public. The usage of BLOBs offer the system scalability (because of the
versioning abilities) and transparency, as each BLOB receives a unique id, freeing the developer from
managing data locations and data transfers.

Atomic snapshot generation is a key property of the BlobSeer system. Readers should not
be able to access inconsistent snapshots that are in the process of being generated.

Data striping is a technique used on a large scale basis in distributed applications, to
increase the performance of data access. In our case, each BLOB is split into chunks (of a fixed size,
specified at the time of the BLOB creation), that are distributed amongst the storage providers of
BlobSeer. The system has a configurable chunk distribution strategy with the goal of achieving load-
balancing, a strategy that can be implemented by the developer as to reach the desired objectives. A
good distribution strategy will result in a high throughput when concurrent clients access different
parts of a BLOB.

Distributed metadata management is important to the system due to the fact that BLOBs
are spread across a large number of storage space providers in a fine-grain manner, forming a
Distributed Hash Table (DHT). Thus, BlobSeer needs to maintain metadata that maps the
subsequences of a BLOB, defined by size and offset, to the corresponding chunks. The fact that the
metadata itself is distributed cuts down on the overhead generated by the large quantities of
metadata generated when working at a large scale.

Explicit versioning is used to enhance data access parallelism, as an older version may be
accessed whilst a newer one is being created. For every write and append, a new snapshot of the
BLOB is taken and past-versions are kept. Reads will never conflict with concurrent writes, as they do
not access the same BLOB. Data and metadata are always created, never overwritten, and only the
difference with respect to the latest version is stored.

RALUCA ANDREEA BABAN

4.3 A practical look at BlobSeer

BlobSeer has a special interface [30],[31] that enables the client to manipulate a BLOB. In
the following section, we will discuss the available primitives for BLOB manipulation, and take a look
at some of BlobSeer’s structures and algorithms. We will not go into more detailed primitives and
algorithms regarding the reading, writing and appending of metadata and data providers, nor the
sharing the metadata over snapshot versions, nor the creation of new snapshot versions, since it is
not this thesis’s objective to go beyond the client’s direct interaction with BlobSeer.

CREATE(callback(id)): this primitive will create a new, empty BLOB, and will return the
BLOB'’s id, 0 (which references an empty snapshot). This id is sent by the provider manager and is
guaranteed to be unique.

WRITE(id, buffer, offset, size, callback(v)) and APPEND(id, buffer, offset, callback(v)):
these primitives update the BLOB (given by the “id”) either by writing size bytes at the given offset
or by appending size bytes at the end of the BLOB. After a new write or append, a new BLOB version
is created (a snapshot), reflecting the changes. The actual version is made public, when the
operation completes. The two primitives are very much alike, so we will discuss the former, since it
contains the latter.

To write data, the client must first determine the number of pages (n) that covers the
range to be written. Then, the provider manager is contacted by the client, with the request to
provide a list of n page providers (PP), one provider for each page, that have free disk space for
storing the data. For each page in parallel, the client generates a unique page id (pid), contacts the
corresponding page provider, to store the data, and creates and updates a corresponding page
descriptor (PD) to store this information. Afterwards, the version manager is contacted, to register
the update. Upon registration, the version manager creates a new snapshot version and
communicates it to the client. The client then creates new metadata and notifies the version
manager of success. After this, it is up to the version manager to determine when to publish the new
snapshot version. Table 2 represents the WRITE algorithm.

Table 2
BlobSeer WRITE algorithm
n <- (offset + size) / page_size

PP <- the list of n page providers

PD <- null

foralli=0ton in parallel do
pid <- unique page id
provider <- PP[i]

store page pid from buffer at i x page_size to provider
PD <- PD U (pid, i, provider)

end for

Vv <- assign snapshot version

BUILD_METADATA(v, offset, size, PD)

notify version manager of success

O PN AW N

=
©

=
N|E

[EEN
w

returnv

BlobSeer Client Access Control

READ(id, v, buffer, offset, size, callback(result)): this primitive reads “size” bytes from the
specified BLOB’s version (“id” representing the BLOB’s id and “v” representing that specific BLOB’s
version to be accessed), starting from “offset”. As a result, “size” bytes replace the local “buffer”.
The callback parameter is a Boolean value which shows if the read was successful or not. The read
fails if “v” has not yet been generated, also if the total size of the version “v” is smaller than the
value “offset + size”.

To read data, first of all the client must contact the version manager to see if the supplied
version has been published. If this is true, then the client contacts the metadata providers, to obtain
the metadata with information regarding the data providers on which the pages of the
corresponding BLOB range are. The information obtained is written into a set of page descriptors
(PG), information such as the page’s global id (“pid”), the index (“i”) in the buffer that will be read,
and the provider that contains the page. Finally, the client fetches the pages in parallel from the data
providers, with the information from the page descriptors. Table 3 represents the READ algorithm.

Table 3
BlobSeer READ algorithm
If v is not published then

Fail
end if
PD <- READ_METADATA(v, offset, size)
for all (pid, i, provider) in PD in parallel do

read pid from provider, into buffer at i X page_size
end for

QO NI RIWIN e

return success

GET_RECENT(id, callback(v, size)) and GET_SIZE(id, v, callback(size)): these primitives help
keep track of the most recent snapshot and size of a BLOB. GET_RECENT queries the system for a
recent snapshot version of the BLOB given by “id”. The result of the query is the snapshot version
number and its corresponding size. The GET_SIZE primitive returns the total size of a BLOB snapshot.
The value is returned only when and if the operation completes successfully.

SUBSCRIBE(id, callback(v, size)) and UNSUBSCRIBE(id): the SUBSCRIBE primitive
represents another way of learning about a new snapshot version in the system, for a specific BLOB.
A notification is sent to the process that calls this primitive, each time a new version is created for
the BLOB identified by “id”. The UNSUBSCRIBE primitive is enough to terminate the notifications.

SYNC(id, v): this primitive is used for “read your writes” consistency, and consists of the
blocking of the caller until snapshot “v” of BLOB “i” is published.

BRANCH(id, v, callback(bid)): this primitive allows alternative evolutions of BLOB “i”, by
the duplication of the original BLOB. The new BLOB is identified by “bid” and has the same version
number as the original. The first WRITE or APPEND on bid will result in the creation of a new
snapshot, with the version number “v+1” for BLOB “bid”.

RALUCA ANDREEA BABAN

BlobSeer has a special way of communicating with all its component layers, be means of
asynchronous remote procedure calls (RPC)[30]. This is possible due to the implemented RPC layer.
Each client-side remote procedure call triggers a corresponding server-side event that encapsulates
the parameters of the call. Once the server-side is done processing the event, it triggers in return, a
completion event on the client-side. This completion event encapsulates the result and is dispatched
to the callback function that was registered with the RPC. The RPC layer handles all communication
details regarding data transfers, socket management and parameter serialization. BlobSeer
implements the RPC layer on top of ASIO, a high-performance asynchronous I/O library that is part
of the Boost collection of meta-template libraries.

BlobSeer Client Access Control

5. Adding access control to BlobSeer

In this chapter we propose a client access control strategy for BlobSeer, based on adding a
new component to the system, generically named the Smanager (Security Manager - SM). We talk
about REGISTRATION, LOG-IN features, BlobSeer client verification, and other issues and also discuss
what security technologies and strategies we base our proposal on as well as our motivations to do
so.

5.1 Adopted security structures and models

In the following subsections we justify our made choices, regarding security algorithms and
structures, regarding the implementation of the security Layer, a client access control module in
BlobSeer. We will talk about X.509 certificates and our option to use RSA keys (5.1.1), as well as
client access models (5.1.2). For more information on the X.509 certificate and RSA key generation,
please consult with subsection 3.1 of this thesis, as for information on authorization and
authentication techniques, please see subsection 3.2.

An important structure of the BlobSeer security Layer is the data structure the SM uses to
register clients, by writing their information to a BLOB. This structure is that described in table 3.

Table 3

Client info structure

Keypass Serialized client public-key

Certificate Serialized client certificate

Log-in Variable that says if the client is logged in or not

Access Monitors how many erroneous accesses the client has had
Permissions 3-bit value that show what permissions the client has
Write_perm List of blob Ids the client has access to

App_perm List of blob Ids the client has access to

Read_perm List of blob Ids the client has access to

Prev Offset of other entry for the same client with more permissions
Next Offset of other entry for same client with more permissions

5.1.1 OpenSSL: X.509 and RSA

We propose that for implementing a secure client access control system for BlobSeer we
use OpenSSL[32], a light-weight tool for authentication and authorization. OpenSSL is based on and
very similar to the widely-used SSL tool, some of the differences worth mentioning being the fact
that OpenSSL is open-source, has encrypting and decrypting capabilities, and implements digital

RALUCA ANDREEA BABAN

certification, digital signatures and random numbers. This tool will be used over BlobSeer’s RPC
layer, to send keys and certificates, from the clients to some of the entities they communicate with,
for BLOB manipulation. The tool may also be used to encrypt the said communications, but it is not
in the scope of this thesis to discuss such procedures. We are only interesting in BlobSeer client
management. We consider that OpenSSL meets our needs in expanding BlobSeer.

OpenSSL is able to produce DSA and RSA keys and even though DSA keys are the official
standard, we opt for using the RSA key-generation protocol, due to the fact that it is faster than the
former and may also be used for encrypting (such a feature may prove useful in BlobSeer’s future).

For client authorization and authentication we propose to work with certificates. OpenSSL
has libraries to implement X.509 certificates, and certificate authorities. After generating a private
key, a Certificate Signing Request (CSR) is generated, leading to the generation of a self-signed
certificate (to be used by the Certificate Authority - CA). The CA afterwards, generates certificates
based on client requests. These certificates are used at log-in, for authentication, and whenever a
client wants access to a BLOB, for authorization. Working with a certificate authority, and RSA
encrypted-keys is much faster and easier to implement in OpenSSL (than with other tools, such as
Kerberos), offering robust security techniques (more robust than let us say the UNIX authentication
protocol). Also, using this tool, we leave the door open for future BlobSeer enhancements, such as
encryption and decryption possibilities.

5.1.2 RBAC, TBAC and ACLs

There is a single data object in BlobSeer, to which clients have access, and that is the BLOB.
In the current BlobSeer system, any client may access any BLOB, if the BLOB id is known.

We propose a RBAC model, where each client may have a full-user role (create, read, and
write permissions regarding a BLOB), and partial-user roles (subsets of the initial full-user role), both
adjustable depending on the client’s actions. For example, If a malicious client creates blobs, without
writing in them, or with writing spam-data, then it’s create and write permissions may be revoked,
first time as a warning. Eventually the permissions may be revoked permanently.

We consider the TBAC model inappropriate due to the fact that it is unnecessarily more
complex in comparison with BlobSeer’s system and mode of operation (no complex tasks take place,
other than the accessing of BLOBS).

ACLs are useful in this client access system proposal, in the sense that these lists will be
client based: ach client will have a list entry, appended to a BLOB maintained by the SM, specifying
what permission is available for which BLOB (for now we work with the essential read, write, append
and create permissions).

Both ACLs and user-roles will be attended to by the Security Manager, updated for a client
when the system is accessed. More information on how security will be managed by the SM can be
found in the following paragraphs.

BlobSeer Client Access Control

5.2 BlobSeer Security Layer

As stated at the beginning of this thesis (chapter 1), BlobSeer has no security Layer. To
solve this problem we propose a new module, a Security Manager, be added to the existing BlobSeer
architecture (section 4.1) that handles client access control. This section presents the module, as
well as dependencies between the existing BlobSeer entities and the Security Manager.

The Security Manager (SM) allows clients to register and log-in keeping client information
in BLOBs or log-in files (LOGS). For every client access request received by BlobSeer, a client-
verification request is issued to the Security Manager, so that it can determine if the client has the
claimed access rights. If the claim is valid, then BLOB manipulation takes place as normal. If not, then
the BlobSeer entity is notified and the client is warned, whilst the Security Manager keeps track of
the number of unauthorized accesses. Depending on the number of unauthorized accesses, a client’s
set of permissions can be altered by the Security Manager. Apart from the SM’s BLOB (in which
information regarding each registered client is held), the SM also has a LOG, which is kept up-to-date
with information regarding a client’s log-in and log-out from the system. These two data storage
objects are protected, in such a way that only the SM has access — the BLOB is protected by the SM
itself whilst the LOG is protected by file rights.

We consider the SM not only a client access manager but also a Certificate Authority,
generating certificates based on data received from the client. Also, the SM has its own pair of
asynchronously generated keys, and its own self-generated certificate, for authenticating it’s self to
entities when accessing a BLOB.

Upon entering the system for the first time, a client must register with the Security
Manager to enable BLOB access. If it is not the first time the client enters the system, then a log-in
sequence must take place, in which the client presents a pass to the Security Manager. This pass is
actually a security certificate issued by the Security Manager.

Whenever the client wants to create, read, write or append a BLOB, credentials must be
sent to the version manager (used for BLOB creation and reading) and to the provider manager
(used in BLOB writing and appending). These managers are implemented in such a way that they
check with the Security Manager that both, the credentials are valid and that the client has specific
permission enabled. To implement this, the READ and WRITE algorithms stated in section 4.3 will be
modified.

5.3 Algorithms and schemas

REGISTRATION: When a new client wants to use BlobSeer, we propose that a
REGISTRATION method be implemented in the way that the client may not access BlobSeer if this
primary stage has not finished successfully. Normally, a client that wants to be able to work in
BlobSeer, initializes is a Object_handler class object, which then can access commands amongst
which create, read write BLOBs (of normal data, or metadata). We have implemented these
functions in such a way that they cannot work if the client has not registered, and logged-in (LOG-IN
is to be discussed in a later paragraph). On registration, the client is not prompted for data but the
information is retrieved from a configuration file, specified at initialization time.

RALUCA ANDREEA BABAN

On the client side an asymmetric RSA key-set is generated and the public key is sent to the
Security Manager, who in turn generates a special certificate for the client, seting the client’s public
key in the certificate, and then signing the certificate with it's own public-key. Apart from this, the
server writes in a BLOB, information regarding the client, such as public-key and an initial default
role (the “full-user” role, meaning that the client may create BLOBs as well as read, write and
append data from/to BLOBS). Back on the client-side, the new X.509 certificate is in a special folder
with limited access, along with the private and public keys.

From this moment on, the client is considered to be registered, and will be allowed to
access BLOBs according to the attributed permissions.

In table 4 is the algorithm for the server side of the REGISTRATION. More information may
be found in section 5.4.2.

Table 4
NEW_REGISTRATION algorithm (SM)

1. | key <- receive_client_public_key()

2. | If (/(cert<- Find_client_in_blob(key))) do

3. param <- get_other_client_param()

4, cert <- generate_certificate(param)

5. p <- set_client_permissions(full_user)

6. client_data <- set_client_data(blob_page_size,p,cert,key)
7. return cert

8. | return cert

UNREGISTER: For symmetry, this function is offered so that the client may undo its
registration. This will mean that on the client-side, the folder created when the client was being
registered, is deleted; on the server-side, the certificate for that specific client will be deleted, but
the entry will still exist, because of the BlobSeer is created, to allow only BLOB-growth (the addition
of data, data is not deleted, eventually re-written), and will be re-written when another client
registers. In table 5 is the algorithm for the server side of the UNREGISTER. More information may be
found in section 5.4.2.

LOG-IN: If registration has already taken place, then the client must log-into the system, to
be able to manipulate the BLOB data. This means that the client must present the Security Manager
with the certificate obtained at registry time. The Security Manager will respond in accordance to
the data it has collected regarding client registration, if the client is registered or not. It is
recommended that the LOG-IN procedure be implemented separately than with the other BLOB
manipulation functions, for the same reasons that were evoked for the REGISTRATION procedure.

In table 6 is the algorithm for the server side of the LOG-IN. More information may be
found in section 5.4.2.

BlobSeer Client Access Control

Table 5
UNREGISTER_OUT algorithm (SM)
1. cert <- get_client_cert()
2. | If (! check(cert_signed_with_SM_key))
3. return error
4. | key <- get_client_public_from_cert()
5. | If ({(client_offset<- Find_client_in_blob(cert))) do
6. cert <- set_cert_to_zero(client_offset+sizeof(key), sizeof(cert))
7. return success
8. | return error
Table 6

LOG-IN algorithm (SM)
1. | cert <- get_client_cert()

2. | If (! check(cert_signed_with_SM_key(cert)))

3. return error

4. | If (!(cert<- Find_client_in_blob(key))) do

5. return error

6. | cliend_id <- get_client_id (cert)

7. | If write_to_log_file(client_id, log_in) == successful do

8. return success

7. | return error

LOG-OUT: For symmetry, we propose a LOG-OUT procedure be implemented as well, so
that a client can be more easily monitored by the System Manager. This LOG-OUT is implemented as
a notification from the client to the Security Manager, that the client has currently finished working
with the system. The LOG-OUT algorithm for the server side, as well as the client side the same with
that of the LOG-IN algorithm. More information may be found in section 5.4.2.

The LOG-OUT as well as the LOG-IN procedure will help BlobSeer keep track of how many
clients are using the system, and help the system have a relative notion on who everybody is. In the
SM’s BLOB, each client will have a special field that keeps track of the client’s status (logged-in or
not). This field not only will improve the SM’s searching speed when verifying if an already logged-in
client has a certain permission (this issue will be discussed in the following paragraph) but will also
help to analize a client’s intentions. This will prove useful for when we want to modify a client’s set

RALUCA ANDREEA BABAN

of permissions, based on their actions. Such a strategy will help BlobSeer protect itself from a
number of attacks, amongst which we can mention the DoS attack.

BLOB ACCESS: Every time a client tries to manipulate a BLOB, it will send its certificate
(issued by the Security Manager) as an access request, to the entities it is necessary to communicate
with. These BlobSeer entities will then query the SM to see if the certificate is valid, and if the client
has the claimed permissions (check_permission(client_cert)). At this step, the SM will first take the
certificate and see if it is signed with the correct public-key (the SM public-key), and if this is true,
then go on an try see if the possible-client’s key is valid (if the key is registered in the BLOB). If these
two conditions are met, then the SM will search for the client entry in the SM BLOB to check the
client’s permissions. If the permissions are those required, then the SM will respond to the query in
a positive manner, otherwise it will return false, allowing the entities to deny the client access. The
SM will also make a note in its LOG of the client’s erroneous behavior. The schema for this line of
communication is in Fig 4.

Client BlobSeer Entity Security Manager

I request (client_cert) E

chack_parmizsion(cliant_cart)

* search for
client

* check
permisions

approve client

.(

* do BELOB work
approve client normaly
recieve results

I

*make note
reject client in log

reject client

I(_

Fig. 4 New Client BLOB access

BlobSeer Client Access Control

5.4 Implementation details

The most commonly used libraries are those of OpenSSL, since they are the ones that offer
the tools needed for creating keys and certificates, as well as key testing, certificate verifying and so
on. In this section we first take a look at some of the above mentioned libraries, and then discuss
some of the implemented classes.

5.4.1 Useful libraries

The following is a list of important libraries that are used repeatedly in the security Layer
implementation:

openssl/evp.h — provides a high-level interface to cryptographic functions.

Out of the many implemented functions we work with the EVP_PKY functions, which
provide a high-level interface for asymmetric algorithms. These functions mostly work with
a PEM format (a base64 encoded data surrounded by header lines).

openssl/rsa.h — implements RSA public-key encryption, and signature functions.

openssl/pem.h — allows the reading and writing of PEM structures from a BIO (an object
OpenSSL based on an 1/O abstraction — more information can be found at the
openssl/bio.h entry) or from a file. These PEM structures may represent keys or
certificates.

openssl/bio.h —is an I/O abstraction that hides many of the underlying I/0 details from the
application, enabling transparent handling of SSL connections, unencrypted network
connections and file I/0O.

openssl/x509.h — is a library used for certificate handling

5.4.2 Written classes, handles and methods

The Security Manager module is made up of the following files (Fig. 5 illustrates the class
diagram), which are at the basis of the security Layer implementation:

smanager.cpp — implements the initialization of the SM. Here, the configuration
parameters for the manager are read from a configuration file defined at BlobSeer
initialization, handles (implemented in mysecurity.cpp) are registered with the RPC server,
a self-signed certificate is generated and a new BLOB is created. A LOG file is also created,
to register client log-ins and log-outs. The keys, certificate and log-file are kept in a
specially created folder, to which only the SM has access.

smanager.hpp — contains the registration ids for the handles.
mysecurity.cpp — implements the handles defined in mysecurity.hpp and auxiliary

functions to aid the handles; this class inherits the object_handler class, for BLOB
manipulation.

RALUCA ANDREEA BABAN

These handles are:
- new_register(): First creates a new certificate for the client, based on the
information received. If the information is incorrect, an appropriate error message is

printed. Secondly, writes to the BLOB created at SM initialization, client information.

- new_log(): checks if the client is registered (has an entry in the BLOB); writes in
the LOG file, information regarding the client.

- unlog_out(): writes in the LOG that the client has logged out. Returns success if
the write is successful.

- uregister_out(): if the client is registered, it set’s the certificate to 0. It returns
success if the operation succeeds.

Some of the other methods implemented in this class are:

- find_client(): searches for the client (by key) in the BLOB, reading keylen (the size
of a client’s key) bytes of data, in each page of BLOB. If the client if found, the offset
in the blob is given.

- del_client(): delets the client by writing Os in the client’s certificate.

- set_client_data(): prepares the client data for writing. This data must in multiples

of blob_page_size.

mysecurity.hpp — contains the handle definitions, auxiliary functions, and useful
parameters.

smanager.cpp smanager.hpp

mysecurity.cpp mysecurity.hpp

object_handler

Fig. 5 Security Manager class diagram

BlobSeer Client Access Control

As stated in earlier sections, before a user can access the BlobSeer system (more
specifically, access BLOBs), registration and log-in must first take place (unless the user is the
Security Manager). To implement this, we added the registration and log-in interface,
registration.hpp. The main methods defined here and implemented in object_handler.cpp, are:

- get_register(): generates the client’s RSA private and public keys, prepares the Security
Manager request for registering, by preparing the following parameters: the public key
(serialized), and authenticating information for creating a certificate (Country Name,
Address etc). When the SM send’s its answer, the response is sent to the solve_register
handle, for processing.

- get_unregister(): sends data to the SM to request the user be unregistered. If the SM
succeeds in fulfilling the request then the certificate and passwords created initially, are
deleted.

- get_logged(): sends information received from the SM when the user was registered,
back to the SM, to announce that the user is now online. This function awaits a response
from the SM, to confirm if the request was satisfied. An error message will appear if the
user is not registered, or if an unknown error has occurred on the SM side (for information
on the SM-side error, the messages printed must be checked on the console where SM is
running).

- get_unlogged(): sends information received from the SM to announce that the user
wishes to log-out. This function awaits confirmation from the SM that the process has
finished successfully.

Most of the already existing methods in object_handler.cpp have been modified, to send
the client certificate to the required entity, and await a response regarding the authorization of the
client.

RALUCA ANDREEA BABAN

6. Experimental results

In this chapter we demonstrate that apart from being useful, the solution we supply carries

a low enough overhead.

We tested our model on creating a BLOB, writing a BLOB and reading a BLOB, without
modifications to the client, without registering to the server, and with the modifications to the client
and with registering to the Service Manager (the phase when the server manager checks the key,
and generates a certificate to send back to the client). We create a blob of 65536 bytes, with storage
managers that can store up to 512 MB

We ran our tests three times for each type of BLOB access:

1) Without modifications:
Create blob

Real 0mO00,012

User 0mO00,008

Sys 0m00,000

Real 0mO00,016
User 0mO00,008
Sys 0m00,004

Real 0mO00,013
User 0mO00,008
Sys 0m00,001

As we can se, there is a small overhead in the BlobSeer system when having to work with
BLOBs. As an observation, the third time we ran the write_blob test, an internal error occurred, and

the overhead there is the smallest.
2) With modifications:

Create blob
Real 0m24,012
User 0m24,808
Sys 0m00,000

Real 0m24,012
User 0m24,808
Sys 0m00,000

As we can se, there exists an overhead in the BlobSeer system when having to work with
BLOBs, and register with the SM as well. As an observation, the second time we ran the write_blob

write blob
0m30,322
0m01,804
0m01.548

0m19,588
0m01,868
0m01.300

0mO05,555
0m00,264
0m00.236

write blob
0m23,322
0m24,804
0m01.548

0m00,770
0m00,296
0m00.236

read_blob
0m08,097
0m03,060
0m01.036

0m07,928
0m03,080
0mo01.124

0m07,765
0mO03,140
0m01.124

read_blob
0m09,128
0m03,180
0mO01.114

0m07,847
0m03,056
0m01.116

test, an internal error occurred, and the overhead there is the smallest.

BlobSeer Client Access Control

7. Conclusions and future work

It is important for a distributed data management system to have a well developed security
strategy, to assure, amongst other security features, data protection, data integrity, client
confidentiality, and system accessibility. All these may be compromised if an unauthorized user is
allowed to access the system and rage havoc.

We consider that the work presented in this thesis has led to a safer BlobSeer system with
a client authentication and authorization service that addresses issues raised in the paragraph
above, and we will propose at the end of this chapter a number of ideas for improving even more
BlobSeer’s security. Even though there is a rise in the overhead generated, the largest being at
registration and log-in, it is not exaggeratedly large, and can be overlooked in comparison with the
benefits of a secure system.

BlobSeer’s no longer ignores the clients that are accessing the system, but maintains
information regarding each and every user in a distributed fashion (the BLOB). At the moment, the
Security Manager may prove to be a bottle neck for the system, when various clients try to register
or when BlobSeer entities try to authenticate their user, but with data replication, this issue may be
solved. Although request are received and resolved by the Security Manager in a sequential manner,
this may be resolved by using threads.

As future work we propose that an extra permission be added to a client’s role, that of
delegation. By this permission, a client should be able to transfer to another client a set of rights for
one or more BLOBs. This will offer better client access control, by restricting even more a client’s
access to a BLOB. Initially all clients may access all BLOBs, if the id is known. By adding the
improvements proposed by this thesis, a client may access BLOBs specified in their permissions (at
the moment a client has rights to access a BLOB it has created). In the future we hope that by
delegating, client A may transfer its rights on its created BLOB to client B, so that both client A and B
may access the same BLOB. This method we consider to be most appealing, since another option is
that the permissions for each client be set manually by an administrator. We realize that since this
delegation option means that client A must know about client B, and that client A must have a way
of communicating this knowledge to the SM, so we propose that a method be implemented so that
client A may ask the System Manager for an updated list of registered clients.

We also propose that the Security Manager have a special thread to deal with client
analysis, meaning that this thread would track the System Manager LOG file, eventually have a log of
its own, and dynamically assess which BlobSeer registered client must have its permissions
reevaluated.

In conclusion, we consider that after taking a look at BlobSeer, and having in mind the
ideas proposed in the above chapters, this thesis has succeeded in its goal of making BlobSeer a
secure distributed file system, by implementing a simple module that keeps track of accessing
clients. These improvements not only offer BlobSeer a client access manager, but also, it offers
BlobSeer a way to protect itself against malicious attacks from the network.

RALUCA ANDREEA BABAN

BIBLIOGRAPHY

[1] B. Nicolae, G. Antoniu, L. Bouge, D. Moise and A. Carpen-Amarie, “BlobSeer: Next-generation data
management for large scale infrastructures,” J.Parallel Distrib. Comput., vol. 71, pp.169-184, 2011.

[2] M. Mosley "DAMA-DMBOK Guide (Data Management Body of Knowledge) Introduction & Project Status”,
DAMA International, http://www.dama.org/files/public/DI DAMA DMBOK Guide Presentation 2007.pdf
2007

[3] “Security for Distributed Systems,” H. Abie http://www.nr.no/~abie/security.htm fetched on 11.05.2011

[4] “Data Management”, Tech-FAQ, http://www.tech-fag.com/data-management.html 2011

[5] S. T. Ross “Unix System Security Tools”, The McGraw-Hill Companies, 1999, pp.1-3
http://www.albion.com/security

[6] “Hadoop DFS User Guid 2007”, the Apache Software Foundation 2.0 http://hadoop.apache.org/ 2007

[7] O. O’Mally, K. Zhang, S. Radia, R. Marti, C.Harrell, “Hadoop Security Design”, web, 2009, pp. 1-19
http://bit.ly/750110

[8] “Hadoop Security Design, Just Add Kerberos? Really?”, A. Becherer , iSEC Partners, Inc, 2010 pp. 1-8.
https://media.blackhat.com/bh-us-10/whitepapers/Becherer/BlackHat-USA-2010-Becherer-Andrew-
Hadoop Security-wp.pdf feched on 20.03.2011

[9] “Amazon Simple Storage Service (Amazon S3)”,Amazon Inc. http://aws.amazon.com/s3/ fetched on
11.05.2011

[10] “All things Distributed”, W.Vogel, http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html
October 2, 2007

[11] “S3 Backup FAQ”, maluke.com, http://www.maluke.com/software/s3-backup/fag fetched on 24.05.2011

[12] R.Mason, The Masuni Blog, http://www.nasuni.com/news/nasuni-blog/amazon-s3s-enhanced-cloud-
storage-security-is-nice-but-not-good-enough/ 06.07.2010

[13] “Amazon S3” Amazon Inc. http://docs.amazonwebservices.com/AmazonS3/latest/dev/ fetched on
25.05.2011

[14] F. Wang, S. Oral, G. Shipman, O.Drokin, T. Wang, I. Huag “Understanding Lustre Filesystem Internals”, UT-
BATTELLE, 2009
http://wiki.lustre.org/images/d/da/Understanding Lustre Filesystem Internals.pdf

[15] “Managing Lustre Security” Oracle,
http://wiki.lustre.org/manual/LustreManual20 HTML/ManagingSecurity.htmI#50438221 pgfld-5529
fetched at 15.05.2011

[16] “The TCP/IP Guide” C. M. Kozierok,
http://www.tcpipguide.com/free/t NFSOverviewHistoryVersionsandStandards.htm , 2005

[17] “File Sharing with NFS” Microsoft TechNet http://technet.microsoft.com/en-us/library/cc976863.aspx,
fetched at 06.2011

http://www.dama.org/files/public/DI_DAMA_DMBOK_Guide_Presentation_2007.pdf
http://www.nr.no/~abie/security.htm
http://www.tech-faq.com/data-management.html
http://www.albion.com/security
http://hadoop.apache.org/
http://bit.ly/75011o
https://media.blackhat.com/bh-us-10/whitepapers/Becherer/BlackHat-USA-2010-Becherer-Andrew-Hadoop Security-wp.pdf
https://media.blackhat.com/bh-us-10/whitepapers/Becherer/BlackHat-USA-2010-Becherer-Andrew-Hadoop Security-wp.pdf
http://aws.amazon.com/s3/
http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html
http://www.maluke.com/software/s3-backup/faq
http://www.nasuni.com/news/nasuni-blog/amazon-s3s-enhanced-cloud-storage-security-is-nice-but-not-good-enough/
http://www.nasuni.com/news/nasuni-blog/amazon-s3s-enhanced-cloud-storage-security-is-nice-but-not-good-enough/
http://docs.amazonwebservices.com/AmazonS3/latest/dev/
http://wiki.lustre.org/images/d/da/Understanding_Lustre_Filesystem_Internals.pdf
http://www.tcpipguide.com/free/t_NFSOverviewHistoryVersionsandStandards.htm
http://technet.microsoft.com/en-us/library/cc976863.aspx

BlobSeer Client Access Control

[18] “NFS Access Control Lists support” IBM
http://publib.boulder.ibm.com/infocenter/aix/v6rl/index.jsp?topic=/com.ibm.aix.commadmn/doc/commadm
ndita/nfs_aclsupport.htm

[19] H. Stern, O. Reilly, M. Eisler and R. Labiaga, “Managing NFS and NIS”, 2" edition 2002
http://docstore.mik.ua/orelly/networking 2ndEd/nfs/ch12 05.htm

[20] “Secure communication” http://en.wikipedia.org/wiki/Secure communication fetched at 17.05.2011
Fetched at 27.04.2011

[21] “Secure RPC” Oracle
http://download.oracle.com/docs/cd/E19082-01/819-1634/rfsrefer-59/index.html fetched at 29.05.2011

[22] “Unix Authentication Example” IBM
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.progcomm/doc/progccp
c_unixauth ex.htm fetched at 29.05.2011

[23] ”SSL Authentication Example” IBM
http://publib.boulder.ibm.com/infocenter/cicsts/v3rl/index.jsp?topic=%2Fcom.ibm.cics.ts31.doc%2Fdfht5%2
Ftopics%2Fdfht50g.htm fetched at 29.05.2011

[24] “Kerberos(protocol)” http://en.wikipedia.org/wiki/Kerberos (protocol) fetched at 30.05.2011

[25] "HRU (security)” http://en.wikipedia.org/wiki/HRU (security) fetched at 30.05.20011

[26] “Role Based Access Control” http://en.wikipedia.org/wiki/Role-based access control
Fetched at 30.05.2011

[27] “Task Based Access Control Model” http://en.cnki.com.cn/Article en/CJFDTOTAL-RIXB200301011.htm
D. Ji-Bo, China, 2003

[28] B. Nicolae, G. Antoniu, and L. Bouge, “Enabling High Data Thtoughput in Desktop Grids Through
Decentralized Data and Metadata Management: The BlobSeer Approach,” in Proc.Euro-Par '09: 15"
International Euro-Par Conference on Parallel Processing, Delft, The Netherlands, 2009, pp.404-416.

[29] B. Nicolae, “High Throughput Data-Compression for Cloud Storage,” Proc. Globe’10:3" International
Conference on Data Management in Grid and P2P Systems, Bilbao, Spain, 2010, pp.1-12.

[30] B. Nicolae, G. Antoniu, L. Bouge, “BlobSeer: How to Enable Efficient Versioning for Large Object Storage
under Heavy Access Concurrency,” in Proc. EDBT/ICDT ‘09 Workshops, Saint-Petersburg, Russia, 2009,
pp. 18-25.

[31] B. Nicolae, “BlobSeer: Towards effiecient data storage management for large-scale, distributed systems,”
PhD Thesis, 2010

[32] “OpenSSL” http://www.openssl.org/ fetched at

http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.commadmn/doc/commadmndita/nfs_aclsupport.htm
http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.commadmn/doc/commadmndita/nfs_aclsupport.htm
http://docstore.mik.ua/orelly/networking_2ndEd/nfs/ch12_05.htm
http://en.wikipedia.org/wiki/Secure_communication fetched at 17.05.2011
http://download.oracle.com/docs/cd/E19082-01/819-1634/rfsrefer-59/index.html
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.progcomm/doc/progccpc_unixauth_ex.htm
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.progcomm/doc/progccpc_unixauth_ex.htm
http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp?topic=%2Fcom.ibm.cics.ts31.doc%2Fdfht5%2Ftopics%2Fdfht50g.htm
http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp?topic=%2Fcom.ibm.cics.ts31.doc%2Fdfht5%2Ftopics%2Fdfht50g.htm
http://en.wikipedia.org/wiki/Kerberos_(protocol)
http://en.wikipedia.org/wiki/HRU_(security)
http://en.wikipedia.org/wiki/Role-based_access_control
http://en.cnki.com.cn/Article_en/CJFDTOTAL-RJXB200301011.htm
http://www.openssl.org/

